Krylov subspace approximations to the matrix exponential are popularly used with full orthogonalization instead of incomplete orthogonalization, even though the latter strategy is known to reduce the cost by truncating the recurrences of the modified Gram-Schmidt process. This study combines such a strategy with an adaptive step-by-step integration scheme that allows both the stepsize and the dimension of the Krylov subspace to vary. A convergence analysis is done. Numerical results on test problems drawn from systems biology and computer systems show a significant speedup over the standard implementation with full orthogonalization and fixed dimension.
机构:
Pontificia Univ Catolica Rio Grande do Sul, Inst Informat, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
Fernandes, P
;
Plateau, B
论文数: 0引用数: 0
h-index: 0
机构:Pontificia Univ Catolica Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
机构:
Pontificia Univ Catolica Rio Grande do Sul, Inst Informat, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
Fernandes, P
;
Plateau, B
论文数: 0引用数: 0
h-index: 0
机构:Pontificia Univ Catolica Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil