On Smith's determinant

被引:56
作者
Haukkanen, P [1 ]
Wang, J [1 ]
Sillanpaa, J [1 ]
机构
[1] DALIAN UNIV TECHNOL, INST MATH SCI, DALIAN 116024, PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0024-3795(96)00192-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a brief review of papers relating to Smith's determinant and point out a common structure that can be found in many extensions and analogues of Smith's determinant. We present the common structure in the language of posets. We also make an investigation on a conjecture of Beslin and Ligh on greatest common divisor (GCD) matrices in the sense of meet matrices and give characterizations of the posets satisfying the conjecture. Further, we give a counterexample for the conjecture of Bourque and Ligh that the least common multiple matrix on any GCD-closed set is invertible. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:251 / 269
页数:19
相关论文
共 41 条
[1]  
Aigner M., 1979, Combinatorial Theory
[2]   ARITHMETICAL PROPERTIES OF GENERALIZED RAMANUJAN SUMS [J].
APOSTOL, TM .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (02) :281-+
[3]  
BESLIN S, 1992, FIBONACCI QUART, V30, P157
[4]   GREATEST COMMON DIVISOR MATRICES [J].
BESLIN, S ;
LIGH, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 118 :69-76
[5]   ANOTHER GENERALIZATION OF SMITH DETERMINANT [J].
BESLIN, S ;
LIGH, S .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 40 (03) :413-415
[6]  
Beslin S., 1989, B NUMBER THEORY RELA, V13, P17
[7]  
BESLIN SJ, 1991, FIBONACCI QUART, V29, P271
[8]   ON GREATEST COMMON DIVISOR MATRICES AND THEIR APPLICATIONS [J].
BHAT, BVR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 158 :77-97
[9]   MATRICES ASSOCIATED WITH CLASSES OF ARITHMETICAL FUNCTIONS [J].
BOURQUE, K ;
LIGH, S .
JOURNAL OF NUMBER THEORY, 1993, 45 (03) :367-376
[10]  
BOURQUE K, 1992, LINEAR ALGEBRA APPL, V174, P65, DOI 10.1016/0024-3795(92)90060-N