Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China

被引:181
作者
Yang, Yusheng [1 ]
Guo, Jianfen [1 ]
Chen, Guangshui [1 ]
Yin, Yunfeng [1 ]
Gao, Ren [1 ]
Lin, Chengfang [1 ]
机构
[1] Fujian Normal Univ, Minist Educ, Key Lab Humid Subtrop Ecogeog Proc, Coll Geog Sci, Fuzhou 350007, Peoples R China
关键词
Natural forest; Monoculture plantation; Labile fractions; Aggregation; MICROBIAL BIOMASS CARBON; LAND-USE CHANGE; NATURAL FOREST; PLANTATION FORESTS; LIGHT-FRACTION; NITROGEN POOLS; MATTER; TILLAGE; QUALITY; STABILIZATION;
D O I
10.1007/s11104-009-9921-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil labile fractions play an important role in improving soil quality due to its ability of maintaining soil fertility and minimizing negative environmental impacts. The objective of this study was to evaluate the effects of forest transition (conversion of natural broadleaf forests into monoculture tree plantations) on soil labile fractions (light fraction organic carbon, particulate organic carbon, and microbial biomass carbon). Soil samples were collected from a natural forest of Castanopsis kawakamii Hayata (NF) and two adjacent 36-year-old monoculture plantations of C. kawakamii (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF) at Xinkou Experimental Forestry Centre, southeastern China. In the 0-100 cm depth, the light fraction organic carbon (LFOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) were significantly lower in the CK and CF than in the NF (P < 0.05). Generally, LFOC, POC and MBC contents declined consistently with profile depth. Significant differences in LFOC, POC and MBC concentrations between the native forest and two plantations were detected at 0-40 cm depth, especially the top 10 cm, whereas there was less change below 40 cm, indicating that labile fraction losses due to forest transition mainly occurred in the surface soils. The three indices of labile organic carbon were closely correlated, suggesting they are interrelated properties. Labile fractions (LFOC, POC and MBC) were more sensitive indicators of SOC change resulting from the forest transition. We also found that forest types significantly affected the water stable aggregate > 0.25 mm content (WSA) at the 0-10 cm depth. It suggested that converting old-growth native forest to intensively-managed plantations would reduce labile organic C, which may be attributed to a combination of factors including quantity of litter materials, microbial activity and management disturbances, which would change greatly with the forest conversion. How long these changes would persist needs the further study.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 42 条
[1]   RATIOS OF MICROBIAL BIOMASS CARBON TO TOTAL ORGANIC-CARBON IN ARABLE SOILS [J].
ANDERSON, TH ;
DOMSCH, KH .
SOIL BIOLOGY & BIOCHEMISTRY, 1989, 21 (04) :471-479
[2]  
[Anonymous], SPSS 13 0
[3]   Stocks and humification degree of organic matter fractions as affected by no-tillage on a subtropical soil [J].
Bayer, C ;
Mielniczuk, J ;
Martin-Neto, L ;
Ernani, PR .
PLANT AND SOIL, 2002, 238 (01) :133-140
[4]   LIGHT-FRACTION SOIL ORGANIC-MATTER - ORIGIN AND CONTRIBUTION TO NET NITROGEN MINERALIZATION [J].
BOONE, RD .
SOIL BIOLOGY & BIOCHEMISTRY, 1994, 26 (11) :1459-1468
[5]   PARTICULATE SOIL ORGANIC-MATTER CHANGES ACROSS A GRASSLAND CULTIVATION SEQUENCE [J].
CAMBARDELLA, CA ;
ELLIOTT, ET .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1992, 56 (03) :777-783
[6]   CARBON AND NITROGEN DISTRIBUTION IN AGGREGATES FROM CULTIVATED AND NATIVE GRASSLAND SOILS [J].
CAMBARDELLA, CA ;
ELLIOTT, ET .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (04) :1071-1076
[7]  
Campbell CA, 1999, SOIL BIOL BIOCHEM, V31, P1, DOI 10.1016/S0038-0717(97)00212-5
[8]   Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys [J].
Chan, KY ;
Bowman, A ;
Oates, A .
SOIL SCIENCE, 2001, 166 (01) :61-67
[9]   Soil carbon fractions and relationship to soil quality under different tillage and stubble management [J].
Chan, KY ;
Heenan, DP ;
Oates, A .
SOIL & TILLAGE RESEARCH, 2002, 63 (3-4) :133-139
[10]   Soluble organic nitrogen pools in forest soils of subtropical Australia [J].
Chen, CR ;
Xu, ZH ;
Zhang, SL ;
Keay, P .
PLANT AND SOIL, 2005, 277 (1-2) :285-297