Homogeneous fractional integrals on Hardy spaces

被引:70
作者
Ding, Y [1 ]
Lu, SZ [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
关键词
fractional integral; homogeneous kernel; L-r-Dini condition; H-P space;
D O I
10.2748/tmj/1178224663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mapping properties for the homogeneous fractional integral operator T-Omega,T-alpha on the Hardy spaces H-p(R-n) are studied. Our results give the extension of Stein-Weiss and Taibleson-Weiss's results for the boundedness of the Riesz potential operator I-alpha on the Hardy spaces H-p(R-n).
引用
收藏
页码:153 / 162
页数:10
相关论文
共 11 条
[1]   SOME INTEGRAL AND MAXIMAL OPERATORS RELATED TO STARLIKE SETS [J].
CHANILLO, S ;
WATSON, DK ;
WHEEDEN, RL .
STUDIA MATHEMATICA, 1993, 107 (03) :223-255
[2]   Hardy spaces estimates for a class of multilinear homogeneous operators [J].
Ding, Y ;
Lu, SZ .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 1999, 42 (12) :1270-1278
[3]   Weighted norm inequalities for fractional integral operators with rough kernel [J].
Ding, Y ;
Lu, SZ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (01) :29-39
[4]   Weak type bounds for a class of rough operators with power weights [J].
Ding, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2939-2942
[5]   The L(p1)XL(p2)X center dot center dot center dot XL(pk) boundedness for some rough operators [J].
Ding, Y ;
Lu, SZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (01) :166-186
[6]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[7]   RESULTS ON WEIGHTED NORM INEQUALITIES FOR MULTIPLIERS [J].
KURTZ, DS ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 255 (NOV) :343-362
[8]   WEIGHTED NORM INEQUALITIES FOR SINGULAR AND FRACTIONAL INTEGRALS [J].
MUCKENHOUPT, B ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 161 (434) :249-+
[9]   ON THE THEORY OF HARMONIC FUNCTIONS OF SEVERAL VARIABLES .1. THE THEORY OF HP-SPACES [J].
STEIN, EM ;
WEISS, G .
ACTA MATHEMATICA, 1960, 103 (1-2) :25-62
[10]  
STEIN EM, 1993, HARMONIC ANAL REAL V