Absolutely continuous invariant probability measures for arbitrary expanding piecewise R-analytic mappings of the plane

被引:38
作者
Buzzi, J [1 ]
机构
[1] Ecole Polytech, Ctr Math, F-91128 Palaiseau, France
关键词
D O I
10.1017/S0143385700000377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any expanding piecewise real-analytic map of a bounded region of the plane admits absolutely continuous invariant probability measures.
引用
收藏
页码:697 / 708
页数:12
相关论文
共 18 条
[1]   Absolutely continuous invariant measures for piecewise expanding C-2 transformations in R(n) on domains with cusps on the boundaries [J].
AdlZarabi, K .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :1-18
[2]  
ALVES J, IN PRESS ANN SCI ECO
[3]  
Blank M. L., 1989, RUSS MATH SURV, V44, P1
[4]   Absolutely continuous invariant measures for generic multi-dimensional piecewise affine expanding maps [J].
Buzzi, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (09) :1743-1750
[5]   Intrinsic ergodicity of affine maps in [0, 1](d) [J].
Buzzi, J .
MONATSHEFTE FUR MATHEMATIK, 1997, 124 (02) :97-118
[6]  
BUZZI J, 9823 IML
[7]   ABSOLUTELY CONTINUOUS INVARIANT-MEASURES FOR PIECEWISE EXPANDING C-2 TRANSFORMATIONS IN RN [J].
GORA, P ;
BOYARSKY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (03) :272-286
[9]   ERGODIC PROPERTIES OF INVARIANT-MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
HOFBAUER, F ;
KELLER, G .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (01) :119-140
[10]  
IVANOV VV, 1986, 27 IZV MATH AK NAUK