Three-dimensional model of electron beam generated plasma

被引:31
作者
Rauf, Shahid [1 ]
Balakrishna, Ajit [1 ]
Agarwal, Ankur [1 ]
Dorf, Leonid [1 ]
Collins, Kenneth [1 ]
Boris, David R. [2 ]
Walton, Scott G. [2 ]
机构
[1] Appl Mat Inc, 974 E Arques Ave,M-S 81312, Sunnyvale, CA 94085 USA
[2] Naval Res Lab, Div Plasma Phys, 4555 Overlook Ave SW, Washington, DC 20375 USA
关键词
electron beam plasma; plasma modeling; low electron temperature plasma; hybrid plasma model; TRANSPORT;
D O I
10.1088/1361-6595/aa6b49
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A three-dimensional model for magnetized electron beam generated plasma is described, which includes a coupled fluid simulation of the bulk plasma and a Monte Carlo model for beam electrons. A modified form of the classical expressions for magnetized-plasma electron transport coefficients is used in the fluid plasma model. The plasma model is calibrated and validated using Langmuir probe measurements in a cylindrical electron beam generated plasma, where the beam is launched parallel to the magnetic field. The electron density (ne) and temperature (Te) are measured along and across the beam for several gas pressures and magnetic fields in Ar. The validated plasma model is then used to examine a three-dimensional electron beam generated plasma system. Generally, plasma densities are on the order of 1016 m (3) and, since there is no externally applied electric field in the plasma region, Te is below 1.25 eV in Ar. The chamber in the simulation is slightly asymmetric perpendicular to the axis of the electron beam and the magnetic field. This asymmetry combined with the E x B drift produce non-uniformities in the plasma even if the magnetic field is spatially uniform in the chamber. However, the cross-field plasma uniformity can be controlled by tailoring the magnetic field profile to enhance or reduce plasma production near the periphery of the chamber.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Probe measurements of electron energy distribution function at intermediate and high pressures and in a magnetic field [J].
Arslanbekov, R. R. ;
Khromov, N. A. ;
Kudryavtsev, A. A. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1994, 3 (04) :528-538
[2]   Anomalous cross field electron transport in a Hall effect thruster [J].
Boniface, C. ;
Garrigues, L. ;
Hagelaar, G. J. M. ;
Boeuf, J. P. ;
Gawron, D. ;
Mazouffre, S. .
APPLIED PHYSICS LETTERS, 2006, 89 (16)
[3]   On the Mechanism of Pulsed Electron Beam Production From an Uninterrupted Plasma Cathode [J].
Boris, David R. ;
Cothran, Christopher D. ;
Compton, Christopher S. ;
Amatucci, William E. ;
Walton, Scott G. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2016, 44 (05) :761-768
[4]  
Clavel G, 2012, ATOMIC LAYER DEPOSITION OF NANOSTRUCTURED MATERIALS, P61
[5]   Electric probes for plasmas: The link between theory and instrument [J].
Demidov, VI ;
Ratynskaia, SV ;
Rypdal, K .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (10) :3409-3439
[6]   Atomic Layer Etch Using a Low Electron Temperature Plasma [J].
Dorf, L. ;
Wang, J. -C. ;
Rauf, S. ;
Zhang, Y. ;
Agarwal, A. ;
Kenney, J. ;
Ramaswamy, K. ;
Collins, K. .
ADVANCED ETCH TECHNOLOGY FOR NANOPATTERNING V, 2016, 9782
[7]   Production of large-area plasmas by electron beams [J].
Fernsler, RF ;
Manheimer, WM ;
Meger, RA ;
Mathew, J ;
Murphy, DP ;
Pechacek, RE ;
Gregor, JA .
PHYSICS OF PLASMAS, 1998, 5 (05) :2137-2143
[8]   Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J].
Hagelaar, GJM ;
Pitchford, LC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) :722-733
[9]   Plasma-based chemical modification of epitaxial graphene with oxygen functionalities [J].
Hernandez, S. C. ;
Wheeler, V. D. ;
Osofsky, M. S. ;
Jernigan, G. G. ;
Nagareddy, Vk ;
Nath, A. ;
Lock, E. H. ;
Nyakiti, L. O. ;
Myers-Ward, R. L. ;
Sridhara, K. ;
Horsfall, A. B. ;
Eddy, C. R., Jr. ;
Gaskill, D. K. ;
Walton, S. G. .
SURFACE & COATINGS TECHNOLOGY, 2014, 241 :8-12
[10]  
Jackson J.D., 1975, CLASSICAL ELECTRODYN, V2nd, P177