The discrete universality of the periodic Hurwitz zeta function

被引:27
作者
Laurincikas, A. [1 ]
Macaitiene, R. [2 ]
机构
[1] Vilnius State Univ, LT-03225 Vilnius, Lithuania
[2] Siauliai Univ, LT-77156 Shiauliai, Lithuania
关键词
periodic Hurwitz zeta function; limit theorem; universality;
D O I
10.1080/10652460902742788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The periodic Hurwitz zeta function [image omitted], s=sigma+it, 01, is defined, for sigma 1, by [image omitted] and by analytic continuation elsewhere. Here {am} is a periodic sequence of complex numbers. In this paper, a discrete universality theorem for the function [image omitted] with a transcendental parameter is proved. Roughly speaking, this means that every analytic function can be approximated uniformly on compact sets by shifts [image omitted], where m is a non-negative integer and h is a fixed positive number such that [image omitted] is rational.
引用
收藏
页码:673 / 686
页数:14
相关论文
共 8 条
[1]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[2]  
CONWAY JB, 1973, FUNCTIONS ONE COMPLE
[3]  
Heyer H., 1977, PROBABILITY MEASURES
[4]   Universality of the periodic Hurwitz zeta-function [J].
Javtokas, A. ;
Laurincikas, A. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (10) :711-722
[5]  
Javtokas A., 2006, HARDY RAMANUJAN J, V29, P18, DOI DOI 10.1007/S10625-005-0242-Y
[6]  
Montgomery H.L., 1971, Lecture Notes in Mathematics
[7]  
TEMPELMAN AA, 1986, ERGODIC THEOREMS GRO
[8]  
Voronin S.M., 1975, IZVESTIYA ROSSIISKOI, V39, P475, DOI [10.1070/IM1975v009n03ABEH001485, DOI 10.1070/IM1975V009N03ABEH001485]