Holonomic Function of 2 Parameter Logistic Model Item Response Theory Parameter Estimation

被引:1
作者
Noguchi, Kazuhisa [1 ]
Ito, Eisuke [1 ]
机构
[1] Kyushu Univ, Fukuoka, Fukuoka, Japan
来源
PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND COMPUTERS (ICETC 2018) | 2018年
关键词
Item Response Theory; IRT; 2 Parameter Logistic Model; Holonomic Function; Parameter Estimation; Differential equation; BINGHAM DISTRIBUTION;
D O I
10.1145/3290511.3290566
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
IRT (Item Response Theory) is a theory for scoring of tests, and it used for some test systems such as TOEFL. IRT's estimation is item parameter for each question, and examinee's ability parameter. We propose a new method to estimate parameter of IRT using the Holonomic Gradient Method. When we use Holonomic Gradient Method, we check target function is Holonomic Function. Our target function is 2 Parameter Logistic Model IRT's Likelihood Function. In this paper, we show target IRT's Likelihood Function is Holonomic Function.
引用
收藏
页码:379 / 382
页数:4
相关论文
共 6 条
  • [1] Birnbaum Allan., 1968, Statistical Theories of Mental Test Scores
  • [2] The holonomic gradient method for the distribution function of the largest root of a Wishart matrix
    Hashiguchi, Hiroki
    Numata, Yasuhide
    Takayama, Nobuki
    Takemura, Akimichi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 : 296 - 312
  • [3] Koyama T, 2014, COMPUTATION STAT, V29, P661, DOI 10.1007/s00180-013-0456-z
  • [4] Lord F. M., 1952, PSYCHOMETRIC MONOGR, V7, P17
  • [5] Holonomic gradient descent and its application to the Fisher-Bingham integral
    Nakayama, Hiromasa
    Nishiyama, Kenta
    Noro, Masayuki
    Ohara, Katsuyoshi
    Sei, Tomonari
    Takayama, Nobuki
    Takemura, Akimichi
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2011, 47 (03) : 639 - 658
  • [6] Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method
    Sei, Tomonari
    Kume, Alfred
    [J]. STATISTICS AND COMPUTING, 2015, 25 (02) : 321 - 332