Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups

被引:24
作者
Arvanitoyeorgos, Andreas [1 ]
Dzhepko, V. V. [2 ]
Nikonorov, Yu. G. [2 ]
机构
[1] Univ Patras, Dept Math, GR-26500 Patras, Greece
[2] Rubtsovsk Ind Inst, Rubtsovsk 658207, Russia
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2009年 / 61卷 / 06期
基金
俄罗斯基础研究基金会;
关键词
Riemannian manifolds; homogeneous spaces; Einstein metrics; Stiefel manifolds; SCALAR CURVATURE; MANIFOLDS;
D O I
10.4153/CJM-2009-056-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemannian manifold (M, rho) is called Einstein if the metric rho satisfies the condition Ric(rho) = c . rho for some constant c. This paper is devoted to the investigation of G-invariant Einstein metrics, with additional symmetries, on some homogeneous spaces G/H of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds SO(n)/SO(l). Furthermore, we show that for any positive integer p there exists a Stiefel manifold SO(n)/SO(l) that admits at least p SO(n)-invariant Einstein metrics.
引用
收藏
页码:1201 / 1213
页数:13
相关论文
共 22 条
[1]  
Alekseevsky D, 1996, PAC J MATH, V175, P1
[2]   NEW INVARIANT EINSTEIN-METRICS ON GENERALIZED FLAG MANIFOLDS [J].
ARVANITOYEORGOS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) :981-995
[3]   EQUIVARIANT GEOMETRY AND KERVAIRE SPHERES [J].
BACK, A ;
HSIANG, WY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (01) :207-227
[4]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[5]   Low-dimensional homogeneous Einstein manifolds [J].
Böhm, C ;
Kerr, MM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) :1455-1468
[6]  
Böhm C, 2004, J DIFFER GEOM, V67, P79
[7]   A variational approach for compact homogeneous Einstein manifolds [J].
Böhm, C ;
Wang, M ;
Ziller, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (04) :681-733
[8]  
D'Atri J. E., 1979, MEM AM MATH SOC, V18
[9]  
D'Atri J-E, 1974, J DIFFER GEOM, V9, P251, DOI [10.4310/jdg/1214432291, DOI 10.4310/JDG/1214432291]
[10]  
Jensen G. R., 1973, Journal of Differential Geometry, V8, P599