Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID

被引:102
作者
Cortal, Akira [1 ]
Martignetti, Loredana [1 ]
Six, Emmanuelle [2 ]
Rausell, Antonio [1 ,3 ]
机构
[1] Univ Paris, Imagine Inst, Clin Bioinformat Lab, INSERM UMR1163, Paris, France
[2] Univ Paris, Lab Human Lymphohematopoiesis, Imagine Inst, INSERM UMR1163, Paris, France
[3] Necker Hosp Sick Children, AP HP, Mol Genet Serv, Paris, France
关键词
RNA-SEQ DATA; ATLAS; OMICS;
D O I
10.1038/s41587-021-00896-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Because of the stochasticity associated with high-throughput single-cell sequencing, current methods for exploring cell-type diversity rely on clustering-based computational approaches in which heterogeneity is characterized at cell subpopulation rather than at full single-cell resolution. Here we present Cell-ID, a clustering-free multivariate statistical method for the robust extraction of per-cell gene signatures from single-cell sequencing data. We applied Cell-ID to data from multiple human and mouse samples, including blood cells, pancreatic islets and airway, intestinal and olfactory epithelium, as well as to comprehensive mouse cell atlas datasets. We demonstrate that Cell-ID signatures are reproducible across different donors, tissues of origin, species and single-cell omics technologies, and can be used for automatic cell-type annotation and cell matching across datasets. Cell-ID improves biological interpretation at individual cell level, enabling discovery of previously uncharacterized rare cell types or cell states. Cell-ID is distributed as an open-source R software package. Cell-ID facilitates the analysis of cell-type heterogeneity and cell identity across multiple samples at the single-cell level.
引用
收藏
页码:1095 / +
页数:13
相关论文
共 59 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data [J].
Alquicira-Hernandez, Jose ;
Sathe, Anuja ;
Ji, Hanlee P. ;
Quan Nguyen ;
Powell, Joseph E. .
GENOME BIOLOGY, 2019, 20 (01)
[3]  
[Anonymous], 2021, LIFETIME INITIATIVE
[4]  
[Anonymous], 2010, BIPLOTS PRACTICE
[5]   Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J].
Aran, Dvir ;
Looney, Agnieszka P. ;
Liu, Leqian ;
Wu, Esther ;
Fong, Valerie ;
Hsu, Austin ;
Chak, Suzanna ;
Naikawadi, Ram P. ;
Wolters, Paul J. ;
Abate, Adam R. ;
Butte, Atul J. ;
Bhattacharya, Mallar .
NATURE IMMUNOLOGY, 2019, 20 (02) :163-+
[6]   xCell: digitally portraying the tissue cellular heterogeneity landscape [J].
Aran, Dvir ;
Hu, Zicheng ;
Butte, Atul J. .
GENOME BIOLOGY, 2017, 18
[7]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[8]   Biplots of fuzzy coded data [J].
Asan, Zerrin ;
Greenacre, Michael .
FUZZY SETS AND SYSTEMS, 2011, 183 (01) :57-71
[9]   The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation [J].
Bankova, Lora G. ;
Dwyer, Daniel F. ;
Yoshimoto, Eri ;
Ualiyeva, Saltanat ;
McGinty, John W. ;
Raff, Hannah ;
von Moltke, Jakob ;
Kanaoka, Yoshihide ;
Austen, K. Frank ;
Barrett, Nora A. .
SCIENCE IMMUNOLOGY, 2018, 3 (28)
[10]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+