Electromechanical finite element analysis for designed low-frequency MEMS piezoelectric vibration energy harvester

被引:1
作者
Xu, Ling [1 ]
Zhou, Shengrui [1 ]
Xiang, Yingfei [1 ]
Yang, Yinglin [1 ]
机构
[1] Fudan Univ, Sch Microelect, Shanghai, Peoples R China
来源
2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020) | 2020年
关键词
MEMS; piezoelectric; vibration energy harvester; electromechanical; finite element model;
D O I
10.1109/ECTC32862.2020.00327
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents an electromechanical finite element analysis for a proposed MEMS piezoelectric vibration energy harvester. The structure of the MEMS energy harvester consists of a basic cantilever beam with a clamped end mass and a spring net which can enhance the reliability of the device. Aluminum nitride thin film is applied as the piezoelectric function material. The proposed MEMS device is also fabricated, packaged and characterized to determine its performance. The spring net structure design is proven to increase the yield of the MEMS energy harvester chips during transportation. Three dimensional electromechanical finite element model coupled the solid mechanics physics and electrostatics physics is built to simulate the piezoelectric effect. The simulated results and the experimental measured data are in close agreement, which verified the prediction of the finite element model. The validation of the model indicate that the finite model can instruct the design of an ideal MEMS piezoelectric device in short period at a low cost.
引用
收藏
页码:2112 / 2117
页数:6
相关论文
共 16 条
  • [1] Energy harvesting vibration sources for microsystems applications
    Beeby, S. P.
    Tudor, M. J.
    White, N. M.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) : R175 - R195
  • [2] An electromechanical finite element model for piezoelectric energy harvester plates
    De Marqui Junior, Carlos
    Erturk, Alper
    Inman, Daniel J.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2009, 327 (1-2) : 9 - 25
  • [3] Vibration energy harvesting with aluminum nitride-based piezoelectric devices
    Elfrink, R.
    Kamel, T. M.
    Goedbloed, M.
    Matova, S.
    Hohlfeld, D.
    van Andel, Y.
    van Schaijk, R.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (09)
  • [4] Finite element based system simulation for piezoelectric vibration energy harvesting devices
    Gedeon, Dominik
    Rupitsch, Stefan J.
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2018, 29 (07) : 1333 - 1347
  • [5] Finite element analysis of vibration energy harvesting using lead-free piezoelectric materials: A comparative study
    Kumar, Anuruddh
    Sharma, Anshul
    Kumar, Rajeev
    Vaish, Rahul
    Chauhan, Vishal S.
    [J]. JOURNAL OF ASIAN CERAMIC SOCIETIES, 2014, 2 (02): : 138 - 143
  • [6] Nabavi S., 2017, MULTIDISCIPLINARY DI, V1, P586
  • [7] On low-frequency electric power generation with PZT ceramics
    Platt, SR
    Farritor, S
    Haider, H
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2005, 10 (02) : 240 - 252
  • [8] A piezoelectric vibration based generator for wireless electronics
    Roundy, S
    Wright, PK
    [J]. SMART MATERIALS & STRUCTURES, 2004, 13 (05) : 1131 - 1142
  • [9] Sodano H. A., 2004, Shock and Vibration Digest, V36, P197, DOI 10.1177/0583102404043275
  • [10] Stocker TF, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1, DOI 10.1017/cbo9781107415324