Homoclinic points in symplectic and volume-preserving diffeomorphisms

被引:32
作者
Xia, ZH
机构
[1] Department of Mathematics, Northwestern University, Evanston
关键词
D O I
10.1007/BF02101901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M(n) be a compact n-dimensional manifold and omega be a symplectic or volume form on M(n). Let phi be a C-1 diffeomorphism on M(n) that preserves omega, and let p be a hyperbolic periodic point of phi. We show that generically p has a homoclinic point, and moreover, the homoclinic points of p is dense on both stable manifold and unstable manifold of p. Takens [11] obtained the same result for n = 2.
引用
收藏
页码:435 / 449
页数:15
相关论文
共 12 条
[11]   GENERIC PROPERTIES OF CONSERVATIVE SYSTEMS [J].
ROBINSON, RC .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (03) :562-&
[12]   HOMOCLINIC POINTS IN CONSERVATIVE SYSTEMS [J].
TAKENS, F .
INVENTIONES MATHEMATICAE, 1972, 18 (3-4) :267-292