Homoclinic points in symplectic and volume-preserving diffeomorphisms

被引:32
作者
Xia, ZH
机构
[1] Department of Mathematics, Northwestern University, Evanston
关键词
D O I
10.1007/BF02101901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M(n) be a compact n-dimensional manifold and omega be a symplectic or volume form on M(n). Let phi be a C-1 diffeomorphism on M(n) that preserves omega, and let p be a hyperbolic periodic point of phi. We show that generically p has a homoclinic point, and moreover, the homoclinic points of p is dense on both stable manifold and unstable manifold of p. Takens [11] obtained the same result for n = 2.
引用
收藏
页码:435 / 449
页数:15
相关论文
共 12 条
[1]  
[Anonymous], 1899, METHODES NOUVELLES M
[2]  
[Anonymous], J DYNAM DIFFERENTIAL
[3]  
HAYASHI S, UNPUB CONNECTING LEM
[4]   QUASI-ELLIPTIC PERIODIC POINTS IN CONSERVATIVE DYNAMICAL-SYSTEMS [J].
NEWHOUSE, SE .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (05) :1061-1087
[5]   ON THE GENERIC EXISTENCE OF HOMOCLINIC POINTS [J].
OLIVEIRA, F .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :567-595
[6]   PLANAR HOMOCLINIC POINTS [J].
PIXTON, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (03) :365-382
[7]  
Pugh C., 1983, ERGOD THEOR DYN SYST, V3, P261, DOI DOI 10.1017/S0143385700001978
[8]  
PUGH CC, 1967, AM J MATH, V89, P956, DOI 10.2307/2373413
[9]   CLOSING STABLE AND UNSTABLE MANIFOLDS ON 2 SPHERE [J].
ROBINSON, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (01) :299-303
[10]   GENERIC PROPERTIES OF CONSERVATIVE SYSTEMS .2. [J].
ROBINSON, RC .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (04) :897-&