Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP)

被引:10
作者
Benkert, Thomas [1 ]
Ehses, Philipp [2 ,3 ]
Blaimer, Martin [1 ]
Jakob, Peter M. [1 ,4 ]
Breuer, Felix A. [1 ]
机构
[1] Res Ctr Magnet Resonance Bavaria MRB, D-97074 Wurzburg, Germany
[2] Univ Tubingen, Dept Neuroimaging, Tubingen, Germany
[3] Max Planck Inst Biol Cybernet, High Field MR Ctr, Spemannstr 38, D-72076 Tubingen, Germany
[4] Univ Wurzburg, Dept Expt Phys 5, D-97070 Wurzburg, Germany
来源
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK | 2016年 / 26卷 / 01期
关键词
Radial imaging; SSFP sequences; 3D isotropic; banding removal; STATE FREE PRECESSION; MR-ANGIOGRAPHY; CRANIAL NERVES; STEADY; RECONSTRUCTION;
D O I
10.1016/j.zemedi.2015.05.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. Methods: While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Results: Volumetric, banding free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm. Conclusion: The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 52 条
[1]  
ANDERSON PG, 1993, APPLICATIONS OF FIBONACCI NUMBERS, VOL 5, P1
[2]   Evaluation of jugular foramen nerves by using b-FFE, T2-weighted DRIVE, T2-weighted FSE and post-contrast T1-weighted MRI sequences [J].
Aydin, Hasan ;
Altin, Elif ;
Dilli, Alper ;
Sipahioglu, Serdar ;
Hekimoglu, Baki .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2011, 17 (01) :3-9
[3]   Analysis of multiple-acquisition SSFP [J].
Bangerter, NK ;
Hargreaves, BA ;
Vasanawala, SS ;
Pauly, JM ;
Gold, GE ;
Nishimura, DG .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (05) :1038-1047
[4]   Dynamically Phase-Cycled Radial Balanced SSFP Imaging for Efficient Banding Removal [J].
Benkert, Thomas ;
Ehses, Philipp ;
Blaimer, Martin ;
Jakob, Peter M. ;
Breuer, Felix A. .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (01) :182-194
[6]   Parameter Estimation Approach to Banding Artifact Reduction in Balanced Steady-State Free Precession [J].
Bjork, Marcus ;
Ingle, R. Reeve ;
Gudmundson, Erik ;
Stoica, Petre ;
Nishimura, Dwight G. ;
Barral, Joelle K. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (03) :880-892
[7]   Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint [J].
Block, Kai Tobias ;
Uecker, Martin ;
Frahm, Jens .
MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (06) :1086-1098
[8]   Spectrally weighted twisted projection imaging: Reducing T-2 signal attenuation effects in fast three-dimensional sodium imaging [J].
Boada, FE ;
Shen, GX ;
Chang, SY ;
Thulborn, KR .
MAGNETIC RESONANCE IN MEDICINE, 1997, 38 (06) :1022-1028
[9]  
Bratley P., 1992, ACM Transactions on Modeling and Computer Simulation, V2, P195, DOI 10.1145/146382.146385
[10]  
Burkardt J., GENERATION NIEDERREI