AN ALGEBRAIC APPROACH TO ENTROPY PLATEAUS IN NON-INTEGER BASE EXPANSIONS

被引:4
|
作者
Allaart, Pieter C. [1 ]
机构
[1] Univ North Texas, Math Dept, 1155 Union Cir 311430, Denton, TX 76203 USA
关键词
Beta-expansion; univoque set; topological entropy; entropy plateau; transitive subshift; composition of fundamental words; HAUSDORFF DIMENSION; UNIQUE EXPANSIONS; SETS;
D O I
10.3934/dcds.2019282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a positive integer M and a real base q is an element of (1, M + 1], let U-q denote the set of numbers having a unique expansion in base q over the alphabet {0, 1, ... , M}, and let U-q denote the corresponding set of sequences in {0, 1, ... M}(N). Komornik et al. [Adv. Math. 305 (2017), 165-196] showed recently that the Hausdorff dimension of Uq is given by h(U-q)/log q, where h(U-q) denotes the topological entropy of U-q. They furthermore showed that the function H : q -> h(U-q) is continuous, nondecreasing and locally constant almost everywhere. The plateaus of H were characterized by Alcaraz Barrera et al. [Trans. Amer. Math. Soc., 371 (2019), 3209-3258]. In this article we reinterpret the results of Alcaraz Barrera et al. by introducing a notion of composition of fundamental words, and use this to obtain new information about the structure of the function H. This method furthermore leads to a more streamlined proof of their main theorem.
引用
收藏
页码:6507 / 6522
页数:16
相关论文
共 50 条
  • [1] A quasi-ergodic approach to non-integer base expansions
    Komornik, Vilmos
    Loreti, Paola
    Pedicini, Marco
    JOURNAL OF NUMBER THEORY, 2024, 254 : 146 - 168
  • [2] Univoque graphs for non-integer base expansions
    Yuru Zou
    Jiachang Li
    Jian Lu
    Vilmos Komornik
    Science China Mathematics, 2021, 64 : 2667 - 2702
  • [3] Univoque graphs for non-integer base expansions
    Yuru Zou
    Jiachang Li
    Jian Lu
    Vilmos Komornik
    ScienceChina(Mathematics), 2021, 64 (12) : 2667 - 2702
  • [4] Univoque graphs for non-integer base expansions
    Zou, Yuru
    Li, Jiachang
    Lu, Jian
    Komornik, Vilmos
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) : 2667 - 2702
  • [5] Bifurcation sets arising from non-integer base expansions
    Allaart, Pieter
    Baker, Simon
    Kong, Derong
    JOURNAL OF FRACTAL GEOMETRY, 2019, 6 (04) : 301 - 341
  • [6] On expansions in non-integer bases
    Komornik, V
    PAUL ERDOS AND HIS MATHEMATICS I, 2002, 11 : 345 - 354
  • [7] OPTIMAL EXPANSIONS IN NON-INTEGER BASES
    Dajani, Karma
    de Vries, Martijn
    Komornik, Vilmos
    Loreti, Paola
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) : 437 - 447
  • [8] EXPANSIONS OF REAL NUMBERS IN NON-INTEGER BASES
    Chunarom, Danita
    Laohakosol, Vichian
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (04) : 861 - 877
  • [9] Multiple common expansions in non-integer bases
    Komornik V.
    Pedicini M.
    Petho A.
    Acta Scientiarum Mathematicarum, 2017, 83 (1-2): : 51 - 60
  • [10] On the number of unique expansions in non-integer bases
    de Vries, Martijn
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (03) : 652 - 657