Alfven solitons in the coupled derivative nonlinear Schrodinger system with symbolic computation

被引:10
|
作者
Xu, Tao [1 ]
Tian, Bo [1 ,2 ,3 ]
Zhang, Cheng [1 ]
Meng, Xiang-Hua [1 ]
Lue, Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-FIBERS; MODULATIONAL INSTABILITY; BACKLUND TRANSFORMATION; HYDROMAGNETIC-WAVES; MODEL; EQUATION; PLASMA; PROPAGATION; EVOLUTION; BRIGHTONS;
D O I
10.1088/1751-8113/42/41/415201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation of nonlinear Alfven waves in magnetized plasmas with right and left circular polarizations is governed by the coupled derivative nonlinear Schrodinger (CDNLS) system. The integrability of this system is indicated by the existence of two gauge-equivalent Lax pairs and infinitely many independent conservation laws. With symbolic computation, the analytic one- and two-soliton solutions are obtained via the Hirota bilinear method. The propagation characteristics of the Alfven waves are discussed through qualitative analysis. The collision dynamics of the CDNLS solitons is found to be characterized by the invariance of the soliton velocities and widths, parameter-dependent changes of the soliton amplitudes and conservation of the total energy of right- and left-polarized components. The parametric condition for the amplitude-preserving collision occurring in each component is explicitly given.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Stability of periodic optical solitons for a nonlinear Schrodinger system
    Pava, Jaime Angulo
    Ferreira, Ademir Pastor
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 927 - 959
  • [32] Collision dynamics of elliptically polarized solitons in Coupled Nonlinear Schrodinger Equations
    Todorov, M. D.
    Christov, C. I.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (07) : 1321 - 1332
  • [33] Collision Dynamics of Polarized Solitons in Linearly Coupled Nonlinear Schrodinger Equations
    Todorov, Michail D.
    Christov, Christo I.
    INTERNATIONAL WORKSHOP ON COMPLEX STRUCTURES, INTEGRABILITY AND VECTOR FIELDS, 2011, 1340 : 144 - +
  • [34] Soliton interaction in the coupled mixed derivative nonlinear Schrodinger equations
    Zhang, Hai-Qiang
    Tian, Bo
    Lue, Xing
    Li, He
    Meng, Xiang-Hua
    PHYSICS LETTERS A, 2009, 373 (47) : 4315 - 4321
  • [35] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [36] New optical solitons and modulation instability analysis of generalized coupled nonlinear Schrodinger-KdV system
    Mathanaranjan, Thilagarajah
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (06)
  • [37] Integrability aspects and soliton solutions for an inhomogeneous nonlinear system with symbolic computation
    Guo, Rui
    Tian, Bo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (08) : 3189 - 3203
  • [38] Dark solitons behaviors for a (2+1)-dimensional coupled nonlinear Schrodinger system in an optical fiber
    Lan, Zhong-Zhou
    Gao, Bo
    Du, Ming-Jing
    CHAOS SOLITONS & FRACTALS, 2018, 111 : 169 - 174
  • [39] Rogue waves and solitons of the coherently-coupled nonlinear Schrodinger equations with the positive coherent coupling
    Zhang, Chen-Rong
    Tian, Bo
    Wu, Xiao-Yu
    Yuan, Yu-Qiang
    Du, Xia-Xia
    PHYSICA SCRIPTA, 2018, 93 (09)
  • [40] Propagating Wave Patterns in a Derivative Nonlinear Schrodinger System with Quintic Nonlinearity
    Rogers, Colin
    Malomed, Boris
    Li, Jin Hua
    Chow, Kwok Wing
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (09)