Alfven solitons in the coupled derivative nonlinear Schrodinger system with symbolic computation

被引:10
|
作者
Xu, Tao [1 ]
Tian, Bo [1 ,2 ,3 ]
Zhang, Cheng [1 ]
Meng, Xiang-Hua [1 ]
Lue, Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-FIBERS; MODULATIONAL INSTABILITY; BACKLUND TRANSFORMATION; HYDROMAGNETIC-WAVES; MODEL; EQUATION; PLASMA; PROPAGATION; EVOLUTION; BRIGHTONS;
D O I
10.1088/1751-8113/42/41/415201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation of nonlinear Alfven waves in magnetized plasmas with right and left circular polarizations is governed by the coupled derivative nonlinear Schrodinger (CDNLS) system. The integrability of this system is indicated by the existence of two gauge-equivalent Lax pairs and infinitely many independent conservation laws. With symbolic computation, the analytic one- and two-soliton solutions are obtained via the Hirota bilinear method. The propagation characteristics of the Alfven waves are discussed through qualitative analysis. The collision dynamics of the CDNLS solitons is found to be characterized by the invariance of the soliton velocities and widths, parameter-dependent changes of the soliton amplitudes and conservation of the total energy of right- and left-polarized components. The parametric condition for the amplitude-preserving collision occurring in each component is explicitly given.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Breathers and solitons for the coupled nonlinear Schrodinger system in three-spine α-helical protein
    Wang, Xiao-Min
    Li, Peng-Fei
    CHINESE PHYSICS B, 2021, 30 (10)
  • [32] Propagation of dark solitons in a system of coupled higher-order nonlinear Schrodinger equations
    Mahalingam, A
    Porsezian, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13): : 3099 - 3109
  • [33] BOUND SOLITONS AND BREATHERS FOR THE GENERALIZED COUPLED NONLINEAR SCHRODINGER-MAXWELL-BLOCH SYSTEM
    Guo, Rui
    Hao, Hui-Qin
    Zhang, Ling-Ling
    MODERN PHYSICS LETTERS B, 2013, 27 (17):
  • [34] Multihumped nondegenerate fundamental bright solitons in N-coupled nonlinear Schrodinger system
    Ramakrishnan, R.
    Stalin, S.
    Lakshmanan, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (14)
  • [35] Numerical Analysis of Nonlinear Coupled Schrodinger-KdV System with Fractional Derivative
    Alzahrani, Abdulrahman B. M.
    SYMMETRY-BASEL, 2023, 15 (09):
  • [36] Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrodinger-Maxwell-Bloch system with symbolic computation
    Guo, Rui
    Tian, Bo
    Lu, Xing
    Zhang, Hai-Qiang
    Liu, Wen-Jun
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (04) : 565 - 577
  • [37] Integrable aspects and applications of a generalized inhomogeneous N-coupled nonlinear Schrodinger system in plasmas and optical fibers via symbolic computation
    Xu, Tao
    Li, Juan
    Zhang, Hai-Qiang
    Zhang, Ya-Xing
    Hu, Wei
    Gao, Yi-Tian
    Tian, Bo
    PHYSICS LETTERS A, 2008, 372 (12) : 1990 - 2001
  • [38] Interaction of coupled higher order nonlinear Schrodinger equation solitons
    Borah, A
    Ghosh, S
    Nandy, S
    EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (02): : 221 - 225
  • [39] Bound states of envelope solitons in coupled nonlinear Schrodinger equations
    Mahmood, MF
    Zachary, WW
    Gill, TL
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1997, 6 (01): : 49 - 53
  • [40] Bilinearization of coupled nonlinear Schrodinger type equations: Integrabilty and solitons
    Porsezian, K
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (02) : 126 - 131