Alfven solitons in the coupled derivative nonlinear Schrodinger system with symbolic computation

被引:10
|
作者
Xu, Tao [1 ]
Tian, Bo [1 ,2 ,3 ]
Zhang, Cheng [1 ]
Meng, Xiang-Hua [1 ]
Lue, Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-FIBERS; MODULATIONAL INSTABILITY; BACKLUND TRANSFORMATION; HYDROMAGNETIC-WAVES; MODEL; EQUATION; PLASMA; PROPAGATION; EVOLUTION; BRIGHTONS;
D O I
10.1088/1751-8113/42/41/415201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation of nonlinear Alfven waves in magnetized plasmas with right and left circular polarizations is governed by the coupled derivative nonlinear Schrodinger (CDNLS) system. The integrability of this system is indicated by the existence of two gauge-equivalent Lax pairs and infinitely many independent conservation laws. With symbolic computation, the analytic one- and two-soliton solutions are obtained via the Hirota bilinear method. The propagation characteristics of the Alfven waves are discussed through qualitative analysis. The collision dynamics of the CDNLS solitons is found to be characterized by the invariance of the soliton velocities and widths, parameter-dependent changes of the soliton amplitudes and conservation of the total energy of right- and left-polarized components. The parametric condition for the amplitude-preserving collision occurring in each component is explicitly given.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Symbolic computation on the bright soliton solutions for the generalized coupled nonlinear Schrodinger equations with cubic-quintic nonlinearity
    Wang, Pan
    Tian, Bo
    OPTICS COMMUNICATIONS, 2012, 285 (16) : 3567 - 3577
  • [22] Bound-state dark/antidark solitons for the coupled mixed derivative nonlinear Schrodinger equations in optical fibers
    Li, Min
    Xiao, Jing-Hua
    Jiang, Yan
    Wang, Ming
    Tian, Bo
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (11)
  • [23] Painleve analysis and symbolic computation for a nonlinear Schrodinger equation with dissipative perturbations
    Bo, T
    Gao, YT
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1996, 51 (03): : 167 - 170
  • [24] Vector solitons for the (2+1)-dimensional coupled nonlinear Schrodinger system in the Kerr nonlinear optical fiber
    Sun, Yan
    Tian, Bo
    Qu, Qi-Xing
    Chai, Han-Peng
    Yuan, Yu-Qiang
    Shan, Wen-Rui
    Jiang, Yan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [25] Vector Dark Solitons for a Coupled Nonlinear Schrodinger System with Variable Coefficients in an Inhomogeneous Optical Fibre
    Liu, Lei
    Tian, Bo
    Wu, Xiao-Yu
    Yuan, Yu-Qiang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (08): : 779 - 787
  • [26] Manipulation of vector solitons in a system of inhomogeneous coherently coupled nonlinear Schrodinger models with variable nonlinearities
    Mareeswaran, R. Babu
    Sakkaravarthi, K.
    Kanna, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (41)
  • [27] A higher-order coupled nonlinear Schrodinger system: solitons, breathers, and rogue wave solutions
    Guo, Rui
    Zhao, Hui-Hui
    Wang, Yuan
    NONLINEAR DYNAMICS, 2016, 83 (04) : 2475 - 2484
  • [28] Solitons, breathers coexist with rogue waves for a higher-order coupled nonlinear Schrodinger system
    Li, Xing-Lan
    Guo, Rui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 108
  • [29] Triple Wronskian solutions of the coupled derivative nonlinear Schrodinger equations in optical fibers
    Li, Min
    Xiao, Jing-Hua
    Liu, Wen-Jun
    Jiang, Yan
    Tian, Bo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 2845 - 2853
  • [30] On a coupled nonlocal nonlinear Schrodinger system
    Ji, Jia-Liang
    Kai, Yue
    Xu, Zong-Wei
    Ma, Li-Yuan
    CHAOS SOLITONS & FRACTALS, 2022, 164