Alfven solitons in the coupled derivative nonlinear Schrodinger system with symbolic computation

被引:10
|
作者
Xu, Tao [1 ]
Tian, Bo [1 ,2 ,3 ]
Zhang, Cheng [1 ]
Meng, Xiang-Hua [1 ]
Lue, Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-FIBERS; MODULATIONAL INSTABILITY; BACKLUND TRANSFORMATION; HYDROMAGNETIC-WAVES; MODEL; EQUATION; PLASMA; PROPAGATION; EVOLUTION; BRIGHTONS;
D O I
10.1088/1751-8113/42/41/415201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation of nonlinear Alfven waves in magnetized plasmas with right and left circular polarizations is governed by the coupled derivative nonlinear Schrodinger (CDNLS) system. The integrability of this system is indicated by the existence of two gauge-equivalent Lax pairs and infinitely many independent conservation laws. With symbolic computation, the analytic one- and two-soliton solutions are obtained via the Hirota bilinear method. The propagation characteristics of the Alfven waves are discussed through qualitative analysis. The collision dynamics of the CDNLS solitons is found to be characterized by the invariance of the soliton velocities and widths, parameter-dependent changes of the soliton amplitudes and conservation of the total energy of right- and left-polarized components. The parametric condition for the amplitude-preserving collision occurring in each component is explicitly given.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Darboux Transformation and Soliton Solutions for Inhomogeneous Coupled Nonlinear Schrodinger Equations with Symbolic Computation
    Xue Yu-Shan
    Tian Bo
    Zhang Hai-Qiang
    Liu Wen-Jun
    Li Li-Li
    Qi Feng-Hua
    Zhan Yan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (05) : 888 - 896
  • [2] Soliton collision in a general coupled nonlinear Schrodinger system via symbolic computation
    Wang, Ming
    Shan, Wen-Rui
    Lu, Xing
    Xue, Yu-Shan
    Lin, Zhi-Qiang
    Tian, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11258 - 11264
  • [3] Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrodinger-Maxwell-Bloch system with symbolic computation
    Guo, Rui
    Tian, Bo
    Lu, Xing
    Zhang, Hai-Qiang
    Liu, Wen-Jun
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (04) : 565 - 577
  • [4] Rogue waves for a system of coupled derivative nonlinear Schrodinger equations
    Chan, H. N.
    Malomed, B. A.
    Chow, K. W.
    Ding, E.
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [5] Transformations and Soliton Solutions for a Variable-coefficient Nonlinear Schrodinger Equation in the Dispersion Decreasing Fiber with Symbolic Computation
    Zeng, Zhi-Fang
    Liu, Jian-Guo
    Jiang, Yan
    Nie, Bin
    FUNDAMENTA INFORMATICAE, 2016, 145 (02) : 207 - 219
  • [6] Soliton solutions and Backlund transformation for the generalized inhomogeneous coupled nonlinear Schrodinger equations via symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Liu, Ying
    Qu, Qi-Xing
    PHYSICA SCRIPTA, 2009, 80 (06)
  • [7] Darboux transformation and soliton solutions for the (2+1)-dimensional nonlinear Schrodinger hierarchy with symbolic computation
    Zhang, Hai-Qiang
    Tian, Bo
    Li, Li-Li
    Xue, Yu-Shan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (01) : 9 - 20
  • [8] Conservation laws and solitons for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Shan, Wen-Rui
    Qi, Feng-Hua
    Guo, Rui
    Xue, Yu-Shan
    Wang, Pan
    Tian, Bo
    PHYSICA SCRIPTA, 2012, 85 (01)
  • [9] Analytic study on bound solitons and soliton collisions for the coupled nonlinear Schrodinger equations
    Liu, Wen-Jun
    Tian, Bo
    Xu, Tao
    Jiang, Yan
    JOURNAL OF MODERN OPTICS, 2012, 59 (05) : 470 - 483
  • [10] Quasicollapse of oblique solitons of the weakly dissipative derivative nonlinear Schrodinger equation
    Sanchez-Arriaga, G.
    Laveder, D.
    Passot, T.
    Sulem, P. L.
    PHYSICAL REVIEW E, 2010, 82 (01):