The Grothendieck Group of an n-exangulated Category

被引:14
作者
Haugland, Johanne [1 ]
机构
[1] NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Grothendieck group; n-exangulated category; (n+2)-angulated category; n-exact category; n-exangulated subcategory; Extriangulated subcategory; AXIOMS;
D O I
10.1007/s10485-020-09622-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the Grothendieck group of an n-exangulated category. For n odd, we show that this group shares many properties with the Grothendieck group of an exact or a triangulated category. In particular, we classify dense complete subcategories of an n-exangulated category with an n-(co)generator in terms of subgroups of the Grothendieck group. This unifies and extends results of Thomason, Bergh-Thaule, Matsui and Zhu-Zhuang for triangulated, (n+2)-angulated, exact and extriangulated categories, respectively. We also introduce the notion of an n-exangulated subcategory and prove that the subcategories in our classification theorem carry this structure.
引用
收藏
页码:431 / 446
页数:16
相关论文
共 17 条
[1]  
Bennett-Tennenhaus R., 2020, ARXIV200302254V2
[2]   The Grothendieck group of an n-angulated category [J].
Bergh, Petter Andreas ;
Thaule, Marius .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (02) :354-366
[3]   The axioms for n-angulated categories [J].
Bergh, Petter Andreas ;
Thaule, Marius .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (04) :2405-2428
[4]   n-angulated categories [J].
Geiss, Christof ;
Keller, Bernhard ;
Oppermann, Steffen .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 :101-120
[5]  
Herschend M., 2017, ARXIV170906689V3
[6]  
Iyama O., 2018, ARXIV180503776
[7]   n-REPRESENTATION-FINITE ALGEBRAS AND n-APR TILTING [J].
Iyama, Osamu ;
Oppermann, Steffen .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) :6575-6614
[8]   Cluster tilting for higher Auslander algebras [J].
Iyama, Osamu .
ADVANCES IN MATHEMATICS, 2011, 226 (01) :1-61
[9]   n-Abelian and n-exact categories [J].
Jasso, Gustavo .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) :703-759
[10]   K-THEORY AND PATCHING FOR CATEGORIES OF COMPLEXES [J].
LANDSBURG, SE .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) :359-384