Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra

被引:9
作者
Bhimani, Divyang G. [1 ]
机构
[1] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
关键词
Fractional Hartree equation; Global well-posedness; Modulation spaces; Fourier algebra; CAUCHY-PROBLEM; MULTIPLIERS;
D O I
10.1016/j.jde.2019.08.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for fractional Schrodinger equation with cubic convolution nonlinearity (i partial derivative(t)u - (-Delta)(alpha/2)u +/- (K * vertical bar u vertical bar(2))u = 0) with Cauchy data in the modulation spaces M-p.q(R-d). For K(x) = vertical bar x vertical bar(-gamma) (0 < gamma < min{alpha,d/2}) we establish global well-posedness results in M-p.q(R-d)(1 <= p <= 2, 1 <= q < 2d/(d + y)) when alpha = 2, d >= 1, and with radial Cauchy data when d >= 2, 2d/2d-1 < alpha < 2. Similar results are proven in Fourier algebra FL1 (R-d) boolean AND L-2(R-d). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 159
页数:19
相关论文
共 22 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[2]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[3]   Local well-posedness of nonlinear dispersive equations on modulation spaces [J].
Benyi, Arpad ;
Okoudjou, Kasso A. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :549-558
[4]   The Cauchy problem for the Hartree type equation in modulation spaces [J].
Bhimani, Divyang G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 :190-201
[5]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[6]   ON THE CAUCHY PROBLEM FOR THE HARTREE TYPE EQUATION IN THE WIENER ALGEBRA [J].
Carles, Remi ;
Mouzaoui, Lounes .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (07) :2469-2482
[7]   ASYMPTOTIC ESTIMATES FOR UNIMODULAR FOURIER MULTIPLIERS ON MODULATION SPACES [J].
Chen, Jiecheng ;
Fan, Dashan ;
Sun, Lijing .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) :467-485
[8]   On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity [J].
Cho, Yonggeun ;
Hajaiej, Hichem ;
Hwang, Gyeongha ;
Ozawa, Tohru .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02) :193-224
[9]   Inclusion relations between LP-Sobolev and Wiener amalgam spaces [J].
Cunanan, Jayson ;
Kobayashi, Masaharu ;
Sugimoto, Mitsuru .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (01) :239-254
[10]  
Feichtinger HG, 1983, TECHNICAL REPORT