On Data-Driven Multi-Product Pricing

被引:0
|
作者
Wang, Tianyu [1 ]
Wu, Chenye [2 ,3 ]
Qi, Wei [4 ]
机构
[1] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[3] Shenzhen Inst Artificial Intelligence & Robot Soc, Res Ctr Crowd Intelligence, Shenzhen 518129, Peoples R China
[4] McGill Univ, Desautels Fac Management, Montreal, PQ H3A 0G4, Canada
来源
IEEE CONTROL SYSTEMS LETTERS | 2021年 / 5卷 / 05期
关键词
Optimization; Pricing; Task analysis; Estimation error; Analytical models; Elasticity; Uncertainty; Estimation; optimization; machine learning; DEMAND;
D O I
10.1109/LCSYS.2020.3043591
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To handle optimization with only historical data, we present a novel learning framework combining parametric estimation and pricing optimization in the multi-product pricing problem. Motivated by the existence of errors, we first introduce the task-based learning with decision bias for handling estimation errors, which can lead to better decision making under demand parameter uncertainty. Then, we follow the idea of model-free learning, which can design better revenue estimators without knowing the parameter structure to handle model misspecification. Furthermore, to design a more robust estimator, we incorporate the boosting idea to combine a number of estimators for more robust pricing. We validate the superior performance of this framework with numerical studies.
引用
收藏
页码:1687 / 1692
页数:6
相关论文
共 50 条
  • [31] Performance analysis and comparison of data-driven models for predicting indoor temperature in multi-zone commercial buildings
    Cui, Borui
    Im, Piljae
    Bhandari, Mahabir
    Lee, Sangkeun
    ENERGY AND BUILDINGS, 2023, 298
  • [32] Multi-period optimal schedule of a multi-product pipeline: A case study in Algeria
    Abdellaoui, Wassila
    Souier, Mehdi
    Sahnoun, M'hammed
    Ben Abdelaziz, Fouad
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 159
  • [33] Hydraulic model optimization of a multi-product pipeline
    Liang Yongtu
    Li Ming
    Li Jiangfei
    PETROLEUM SCIENCE, 2012, 9 (04) : 521 - 526
  • [34] Data-driven smart charging for heterogeneous electric vehicle fleets
    Frendo, Oliver
    Graf, Jerome
    Gaertner, Nadine
    Stuckenschmidt, Heiner
    ENERGY AND AI, 2020, 1
  • [35] Optimal synthesis of multi-product energy systems under neutrosophic environment
    Tapia, John Frederick D.
    ENERGY, 2021, 229
  • [36] Data-driven and safety-aware holistic production planning
    Gordon, Christopher Ampofo Kwadwo
    Pistikopoulos, Efstratios N.
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 77
  • [37] Robust Data-driven Profile-based Pricing Schemes
    Cui, Jingshi
    Wang, Haoxiang
    Wu, Chenye
    Yu, Yang
    2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [38] Probabilistic Data-Driven Invariance for Constrained Control of Nonlinear Systems
    Kashani, Ali
    Strong, Amy K.
    Bridgeman, Leila J.
    Danielson, Claus
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3165 - 3170
  • [39] Data-driven enhancement of facial attractiveness
    Leyvand, Tommer
    Cohen-Or, Daniel
    Dror, Gideon
    Lischinski, Dani
    ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [40] Data-driven product configuration improvement and product line restructuring with text mining and multitask learning
    Chen, Zhen-Yu
    Liu, Xin-Li
    Yin, Li-Ping
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (04) : 2043 - 2059