Functional estimation and hypothesis testing in nonparametric boundary models

被引:3
作者
Reiss, Markus [1 ]
Wahl, Martin [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
关键词
minimax hypothesis testing; non-linear functionals; Poisson point process; support estimation; REGRESSION;
D O I
10.3150/18-BEJ1064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a Poisson point process with unknown support boundary curve g, which forms a prototype of an irregular statistical model. We address the problem of estimating non-linear functionals of the form ( )integral Phi (g (x)) dx. Following a nonparametric maximum-likelihood approach, we construct an estimator which is UMVU over Holder balls and achieves the (local) minimax rate of convergence. These results hold under weak assumptions on Phi which are satisfied for Phi (u) = vertical bar u vertical bar(p), p >= 1. As an application, we consider the problem of estimating the L-p-norm and derive the minimax separation rates in the corresponding nonparametric hypothesis testing problem. Structural differences to results for regular nonparametric models are discussed.
引用
收藏
页码:2597 / 2619
页数:23
相关论文
共 15 条
[1]  
[Anonymous], LECT NOTES STAT
[2]  
[Anonymous], 2009, SPRINGER SER STAT, DOI DOI 10.1007/B13794
[3]  
Bergh J., 1976, GRUND MATH WISS, V223
[4]  
Emery M, 2000, LECT NOTES MATH, V1738, P5
[5]  
IBRAGIMOV I. A., 1986, Teor. Veroyatn. Primen., V31, P451
[6]  
Ingster Yuri Izmailovich, 2003, Lecture Notes in Statistics, V169, DOI DOI 10.1007/978-0-387-21580-8
[7]   ADAPTIVE FUNCTION ESTIMATION IN NONPARAMETRIC REGRESSION WITH ONE-SIDED ERRORS [J].
Jirak, Moritz ;
Meister, Alexander ;
Reiss, Markus .
ANNALS OF STATISTICS, 2014, 42 (05) :1970-2002
[8]  
Kallenberg O., 2002, Foundations of Modern Probability. Probability and its Applications, V2nd
[9]  
Karr A. F., 1991, PROBABILITY PURE APP, V7
[10]  
Last G., 2018, Institute of Mathematical Statistics Textbooks, V7, DOI DOI 10.1017/9781316104477