NONEXISTENCE AND SYMMETRY OF SOLUTIONS TO SOME FRACTIONAL LAPLACIAN EQUATIONS IN THE UPPER HALF SPACE

被引:6
作者
Guo, Yanyan [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
关键词
Fractional Laplacian; method of moving planes; radial symmetry; nonexistence; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS;
D O I
10.1016/S0252-9602(17)30040-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the fractional Laplacian equation {(-Delta)(alpha/2) u = K (x) f (u), x is an element of R+ (n) , u 0 x is not an element of R-+(n) , where 0 < alpha< 2, R-+(n) := {x = (x1, x2, ... , xn) | x(n) > 0}. When K is strictly decreasing with respect to |x'|, the symmetry of positive solutions is proved, where x' (x1, x2, ... , x(n-1)) is an element of Rn-1. When K is strictly increasing with respect to x(n) or only depend on x(n), the nonexistence of positive solutions is obtained.
引用
收藏
页码:836 / 851
页数:16
相关论文
共 18 条
  • [1] Berestycki H., 1988, J. Geom. Phys., V5, P237
  • [2] Bianchi G, 1997, COMMUN PART DIFF EQ, V22, P1671
  • [3] Bogdan K, 1997, STUD MATH, V123, P43
  • [4] Chen W X, ARXIV14111697
  • [5] Some Liouville theorems for the fractional Laplacian
    Chen, Wenxiong
    D'Ambrosio, Lorenzo
    Li, Yan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 370 - 381
  • [6] Liouville theorems involving the fractional Laplacian on a half space
    Chen, Wenxiong
    Fang, Yanqin
    Yang, Ray
    [J]. ADVANCES IN MATHEMATICS, 2015, 274 : 167 - 198
  • [7] CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS
    CHEN, WX
    LI, CM
    [J]. DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) : 615 - 622
  • [8] Damascelli L, 2004, REV MAT IBEROAM, V20, P67
  • [9] Monotonicity and nonexistence results for some fractional elliptic problems in the half-space
    Fall, Mouhamed Moustapha
    Weth, Tobias
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
  • [10] SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE
    GIDAS, B
    NI, WM
    NIRENBERG, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) : 209 - 243