Positive solutions for Robin problem involving the p(x)-Laplacian

被引:63
作者
Deng, Shao-Gao [1 ,2 ]
机构
[1] SW Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Laplacian; Robin problem; Positive solution; Sub-supersolution method; Variational method; ELLIPTIC-EQUATIONS; EIGENVALUE PROBLEMS; VARIABLE EXPONENT; LOCAL MINIMIZERS; EXISTENCE; MULTIPLICITY; REGULARITY; SOBOLEV; SPACES; PRINCIPLE;
D O I
10.1016/j.jmaa.2009.06.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider Robin problem involving the p(x)-Laplacian on a smooth bounded domain Omega as follows {-Delta(rho(x))u =lambda f (x, u) in Omega, vertical bar del u vertical bar(rho(x)-2)partial derivative u/partial derivative eta + beta vertical bar u vertical bar(rho(x)-2)u = 0 on partial derivative Omega. Applying the sub-supersolution method and the variational method, under appropriate assumptions on f, we prove that there exists lambda(*) > 0 such that the problem has at least two positive solutions if lambda is an element of (0, lambda(*)), has at least one positive solution if lambda = lambda(*) < + infinity and has no positive solution if lambda > lambda(*). To prove the results, we prove a norm on W-1.rho(x)(Omega) without the part of vertical bar .vertical bar L-rho(x)( Omega) which is equivalent to usual one and establish a special strong comparison principle for Robin problem. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:548 / 560
页数:13
相关论文
共 35 条
[11]   Eigenvalues of the p(x)-Laplacian Steklov problem [J].
Deng, Shao-Gao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) :925-937
[12]   A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations [J].
Deng, Shao-Gao .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) :234-241
[13]   Existence of multiple positive solutions for inhomogeneous Neumann problem [J].
Deng, YB ;
Peng, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (01) :155-174
[14]  
Diening L., 2004, FSDONA04 Proc, V66, P38
[15]  
Fan X.-L., 2003, Chinese J. Contemp. Math, V24, P277
[16]   Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations [J].
Fan, Xianling ;
Deng, Shao-Gao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) :3064-3075
[17]   On the sub-supersolution method for p(x)-Laplacian equations [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) :665-682
[18]   Global C1,α regularity for variable exponent elliptic equations in divergence form [J].
Fan, Xianling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :397-417
[19]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[20]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446