Positive solutions for Robin problem involving the p(x)-Laplacian

被引:63
作者
Deng, Shao-Gao [1 ,2 ]
机构
[1] SW Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Laplacian; Robin problem; Positive solution; Sub-supersolution method; Variational method; ELLIPTIC-EQUATIONS; EIGENVALUE PROBLEMS; VARIABLE EXPONENT; LOCAL MINIMIZERS; EXISTENCE; MULTIPLICITY; REGULARITY; SOBOLEV; SPACES; PRINCIPLE;
D O I
10.1016/j.jmaa.2009.06.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider Robin problem involving the p(x)-Laplacian on a smooth bounded domain Omega as follows {-Delta(rho(x))u =lambda f (x, u) in Omega, vertical bar del u vertical bar(rho(x)-2)partial derivative u/partial derivative eta + beta vertical bar u vertical bar(rho(x)-2)u = 0 on partial derivative Omega. Applying the sub-supersolution method and the variational method, under appropriate assumptions on f, we prove that there exists lambda(*) > 0 such that the problem has at least two positive solutions if lambda is an element of (0, lambda(*)), has at least one positive solution if lambda = lambda(*) < + infinity and has no positive solution if lambda > lambda(*). To prove the results, we prove a norm on W-1.rho(x)(Omega) without the part of vertical bar .vertical bar L-rho(x)( Omega) which is equivalent to usual one and establish a special strong comparison principle for Robin problem. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:548 / 560
页数:13
相关论文
共 35 条
[1]   Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems [J].
Abreu, EAM ;
do O, JM ;
Medeiros, ES .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1443-1471
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[5]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[6]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618
[7]  
Chang KC, 1983, SCI SINICA A, V24, P1241
[8]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[9]   Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations [J].
Damascelli, L ;
Sciunzi, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :483-515
[10]   Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations [J].
Damascelli, L ;
Sciunzi, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) :139-159