DARBOUX POLYNOMIALS FOR LOTKA-VOLTERRA SYSTEMS IN THREE DIMENSIONS

被引:17
|
作者
Christodoulides, Yiannis T. [1 ]
Damianou, Pantelis A. [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Lotka-Volterra model; integrability; Darboux polynomials; HAMILTONIAN-SYSTEMS; 1ST INTEGRALS; DIFFERENTIAL-EQUATIONS; TODA LATTICE; INVARIANTS; INTEGRABILITY; FAMILIES;
D O I
10.1142/S1402925109000261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Lotka-Volterra systems in three dimensions depending on three real parameters. By using elementary algebraic methods we classify the Darboux polynomials (also known as second integrals) for such systems for various values of the parameters, and give the explicit form of the corresponding cofactors. More precisely, we show that a Darboux polynomial of degree greater than one is reducible. In fact, it is a product of linear Darboux polynomials and first integrals.
引用
收藏
页码:339 / 354
页数:16
相关论文
共 50 条
  • [31] GLOBAL AND BLOWUP SOLUTIONS FOR GENERAL LOTKA-VOLTERRA SYSTEMS
    Chen, Shaohua
    Xu, Runzhang
    Yang, Hongtao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1757 - 1768
  • [33] Integrals of Lotka-Volterra systems with partially broken symmetry
    Slepnyov, SK
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 126 (1-2) : 165 - 167
  • [34] Global dynamics of a family of 3-D Lotka-Volterra systems
    Murza, A. C.
    Teruel, A. E.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 269 - 284
  • [35] Stochastic Lotka-Volterra Model
    Lian, Baosheng
    Hu, Shi-geng
    ICMS2009: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 5, 2009, : 417 - 420
  • [36] A study of a three-dimensional competitive Lotka-Volterra system
    Munteanu, Florian
    INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS AND NUMERICAL METHODS (ICAMNM 2020), 3RD EDITION, 2020, 34
  • [37] Generalized discrete Lotka-Volterra equation, orthogonal polynomials and generalized epsilon algorithm
    Chen, Xiao-Min
    Chang, Xiang-Ke
    He, Yi
    Hu, Xing-Biao
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 335 - 375
  • [38] The 1: -q resonant center problem for certain cubic Lotka-Volterra systems
    Chen, Xingwu
    Gine, Jaume
    Romanovski, Valery G.
    Shafer, Douglas S.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11620 - 11633
  • [39] Integrability and linearizability for Lotka-Volterra systems with the 3:−q resonant saddle point
    Qinlong Wang
    Wentao Huang
    Advances in Difference Equations, 2014
  • [40] MEASURE PRESERVATION AND INTEGRALS FOR LOTKA-VOLTERRA TREE-SYSTEMS AND THEIR KAHAN DISCRETISATION
    van der Kamp, Peter H.
    McLachlan, Robert I.
    McLaren, David I.
    Quispel, G. R. W.
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024, 11 (04): : 468 - 484