Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis

被引:51
作者
Jiang, Jingjie [1 ]
Ye, Gang [1 ]
Lorandi, Francesca [2 ]
Liu, Zeyu [1 ]
Liu, Yanqi [1 ]
Hu, Tongyang [1 ]
Chen, Jing [1 ]
Lu, Yuexiang [1 ]
Matyjaszewski, Krzysztof [2 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Collaborat Innovat Ctr Adv Nucl Energy Technol, Beijing 100084, Peoples R China
[2] Carnegie Mellon Univ, Dept Chem, 4400 Fifth Ave, Pittsburgh, PA 15213 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
nanostructures; surface plasmon resonance; photocatalysis; RAFT polymerization; PET-RAFT; PHOTOCATALYTIC ACTIVITY; OXYGEN TOLERANCE; MECHANISM; NANOSTRUCTURES; SEMICONDUCTOR; CONVERSION; DRIVEN; ATRP;
D O I
10.1002/anie.201906194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo-regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near-infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3PO4 photocatalysts in a reversible addition-fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR-mediated electron transfer mechanism. Owing to the LSPR-enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre-deoxygenation.
引用
收藏
页码:12096 / 12101
页数:6
相关论文
共 45 条
[1]   Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties [J].
Bi, Yingpu ;
Ouyang, Shuxin ;
Umezawa, Naoto ;
Cao, Junyu ;
Ye, Jinhua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (17) :6490-6492
[2]   Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects [J].
Braunecker, Wade A. ;
Tsarevsky, Nicolay V. ;
Gennaro, Armando ;
Matyjaszewski, Krzysztof .
MACROMOLECULES, 2009, 42 (17) :6348-6360
[3]   Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons [J].
Christopher, Phillip ;
Ingram, David B. ;
Linic, Suljo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9173-9177
[4]  
Corrigan N., 2019, ANGEW CHEM INT EDIT, V131, P5224, DOI [10.1002/ange.201805473, DOI 10.1002/ANGE.201805473]
[5]   Seeing the Light: Advancing Materials Chemistry through Photopolymerization [J].
Corrigan, Nathaniel ;
Yeow, Jonathan ;
Judzewitsch, Peter ;
Xu, Jiangtao ;
Boyer, Cyrille .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) :5170-5189
[6]   Oxygen Tolerance in Living Radical Polymerization: Investigation of Mechanism and Implementation in Continuous Flow Polymerization [J].
Corrigan, Nathaniel ;
Rosli, Dzulfadhli ;
Jones, Jesse Warren Jeffery ;
Xu, Jiangtao ;
Boyer, Cyrille .
MACROMOLECULES, 2016, 49 (18) :6779-6789
[7]   Photoinduced Electron Transfer Reactions for Macromolecular Syntheses [J].
Dadashi-Silab, Sajjad ;
Doran, Sean ;
Yagci, Yusuf .
CHEMICAL REVIEWS, 2016, 116 (17) :10212-10275
[8]   Control of a Living Radical Polymerization of Methacrylates by Light [J].
Fors, Brett P. ;
Hawker, Craig J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (35) :8850-8853
[9]   Control of a Living Radical Polymerization of Methacrylates by Light [J].
Fors, Brett P. ;
Hawker, Craig J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (35) :8850-8853
[10]  
Jiang J J, 2018, ANGEW CHEM, V130, P12213, DOI DOI 10.1002/ANIE.201408492