Spectral isometries onto algebras having a separating family of finite-dimensional irreducible representations

被引:8
作者
Costara, Constantin [3 ]
Repovs, Dusan [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 1001, Slovenia
[2] Univ Ljubljana, Fac Educ, Ljubljana 1001, Slovenia
[3] Ovidius Univ, Fac Math & Informat, Mamaia 124, Constanta, Romania
关键词
Spectral isometry; Jordan isomorphism; Finite-dimensional irreducible representation; Preserver; BANACH-ALGEBRAS;
D O I
10.1016/j.jmaa.2009.11.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if A is a complex. unital semisimple Banach algebra and B is a complex, unital Banach algebra having a separating family of finite-dimensional irreducible representations, then any unital linear operator from A onto L; which preserves the spectral radius is a Jordan morphistn. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 608
页数:4
相关论文
共 9 条
[1]  
[Anonymous], BANACH CTR PUBLICATI
[2]   Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras [J].
Aupetit, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :917-924
[3]   GENERALIZATION OF GLEASON-KAHANE-ZELAZKO THEOREM FOR BANACH-ALGEBRAS [J].
AUPETIT, B .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 85 (01) :11-17
[4]  
AUPETIT B, 1991, PRIMER SPECTRAL THEO
[5]   Linear maps preserving the spectral radius [J].
Bresar, M ;
Semrl, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 142 (02) :360-368
[6]  
KAPLANSKY I, 1970, CBMS SER AM MATH SOC, V1
[7]   Hereditary properties of spectral isometries [J].
Mathieu, M ;
Sourour, AR .
ARCHIV DER MATHEMATIK, 2004, 82 (03) :222-229
[8]   First results on spectrally bounded operators [J].
Mathieu, M ;
Schick, GJ .
STUDIA MATHEMATICA, 2002, 152 (02) :187-199
[9]  
Mathieu M, 2007, CONTEMP MATH, V435, P301