3D Printing Carbonaceous Objects from Polyimide Pyrolysis

被引:30
作者
Arrington, Clay B. [1 ,2 ]
Rau, Daniel A. [2 ,3 ]
Vandenbrande, Johanna A. [4 ,5 ]
Hegde, Maruti [6 ]
Williams, Christopher B. [2 ,3 ]
Long, Timothy E. [4 ,5 ]
机构
[1] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[2] Virginia Tech, Macromol Innovat Inst MII, Blacksburg, VA 24061 USA
[3] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[4] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85281 USA
[5] Arizona State Univ, Biodesign Ctr Sustainable Macromol Mat & Mfg, Tempe, AZ 85281 USA
[6] Univ N Carolina, Appl Phys Sci, Chapel Hill, NC 27599 USA
关键词
CARBONIZATION; FILM; GRAPHITIZATION; NITROGEN; KAPTON; FABRICATION; STATE;
D O I
10.1021/acsmacrolett.1c00032
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Fully aromatic polyimides are amenable to efficient carbonization in thin two-dimensional (2D) films due to a complement of aromaticity and planarity of backbone repeating units. However, repeating unit rigidity traditionally imposes processing limitations, restricting many fully aromatic polyimides, e.g., pyromellitic dianhydride with 4,4'-oxidianiline (PMDA-ODA) polyimides, to a 2D form factor. Recently, research efforts in our laboratories enabled additive manufacturing of micron-scale resolution PMDA-ODA polyimide objects using vat photopolymerization (VP) and ultraviolet-assisted direct ink write (UV-DIW) following careful thermal postprocessing of the three-dimensional (3D) organogel precursors to 400 degrees C. Further thermal postprocessing of printed objects to 1000 degrees C induced pyrolysis of the PMDA-ODA objects to disordered carbon. The pyrolyzed objects retained excellent geometric resolution, and Raman spectroscopy displayed characteristic disordered (D) and graphitic (G) carbon bands. Scanning electron microscopy probed the cross-sectional homogeneity of the carbonized samples, revealing an absence of pore formation during carbonization. Likewise, impedance analysis of carbonized specimens indicated only a moderate decrease in conductivity compared to thin films that were pyrolyzed using an identical carbonization process. Facile pyrolysis of PMDA-ODA objects now enables the production of carbonaceous monoliths with complex and predictable three-dimensional geometries using commercially available starting materials.
引用
收藏
页码:412 / 418
页数:7
相关论文
共 53 条
[1]   GROWTH, STRUCTURE, AND PROPERTIES OF GRAPHITE WHISKERS [J].
BACON, R .
JOURNAL OF APPLIED PHYSICS, 1960, 31 (02) :283-290
[2]  
Bauer J, 2016, NAT MATER, V15, P438, DOI [10.1038/NMAT4561, 10.1038/nmat4561]
[3]   MODELING STUDIES OF AMORPHOUS-CARBON [J].
BEEMAN, D ;
SILVERMAN, J ;
LYNDS, R ;
ANDERSON, MR .
PHYSICAL REVIEW B, 1984, 30 (02) :870-875
[4]   3D printing of high performance cyanate ester thermoset polymers [J].
Chandrasekaran, Swetha ;
Duoss, Eric B. ;
Worsley, Marcus A. ;
Lewicki, James P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) :853-858
[5]   Domino games: Controlling structure and patterns of carbon nanomaterials in 2D & 3D [J].
Fechler, Nina ;
Antonietti, Markus .
NANO TODAY, 2015, 10 (05) :593-614
[6]   25th Anniversary Article: "Cooking Carbon with Salt": Carbon Materials and Carbonaceous Frameworks from Ionic Liquids and Poly(ionic liquid)s [J].
Fellinger, Tim-Patrick ;
Thomas, Arne ;
Yuan, Jiayin ;
Antonietti, Markus .
ADVANCED MATERIALS, 2013, 25 (41) :5838-5854
[7]   Progress in 3D Printing of Carbon Materials for Energy-Related Applications [J].
Fu, Kun ;
Yao, Yonggang ;
Dai, Jiaqi ;
Hu, Liangbing .
ADVANCED MATERIALS, 2017, 29 (09)
[8]   Carbon molecular sieve membranes from polyetherimide [J].
Fuertes, AB ;
Centeno, TA .
MICROPOROUS AND MESOPOROUS MATERIALS, 1998, 26 (1-3) :23-26
[9]  
Ghosh M.K., 1996, Polyimides: Fundamentals and Applications
[10]  
Hasegawa T, 2001, PROG POLYM SCI, V26, P259