A variational theory for light rays in stably causal Lorentzian manifolds: Regularity and multiplicity results

被引:28
作者
Giannoni, F [1 ]
Masiello, A [1 ]
Piccione, P [1 ]
机构
[1] POLITECN BARI,DIPARTIMENTO MATEMAT,BARI,ITALY
关键词
D O I
10.1007/s002200050141
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is dedicated to the study of light rays joining an event p with a timelike curve gamma in a light-convex subset Lambda of a stably causal Lorentzian manifold M. We set up a functional framework, defined intrinsically, consisting of a family of manifolds L-p,gamma,epsilon(+) and a positive functional Q defined on them. The critical points of Q on L-p,gamma,epsilon(+) approach, as epsilon --> 0, the lightlike, future pointing geodesics joining p and gamma. We prove some regularity results, including the C-1-regularity of L-p,gamma,epsilon(+), the C-2-regularity of Q on L-p,gamma,epsilon(+) and the C-2-regularity of its critical points. Using them, we develop a Ljusternik-Schnirelman theory for light rays, obtaining some multiplicity results, depending on the topology of the space of all lightlike curves joining p and gamma.
引用
收藏
页码:375 / 415
页数:41
相关论文
共 14 条
[1]  
[Anonymous], 1963, ANN MATH STUD
[2]   A Fermat Principle on Lorentzian manifolds and applications [J].
Antonacci, F ;
Piccione, P .
APPLIED MATHEMATICS LETTERS, 1996, 9 (02) :91-95
[3]  
Beem J K., 1996, Global Lorentzian Geometry
[4]   A variational theory for hight rays on Lorentz manifolds [J].
Giannoni, F ;
Masiello, A ;
Piccione, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (10) :1093-1098
[5]  
GIANNONI F, IN PRESS ANN I H POI
[6]  
GIANNONI F, IN PRESS ANN MAT PUR
[7]  
Hawking S. W., 2011, LARGE SCALE STRUCTUR
[8]  
KLINGENBERG W, 1982, RIEMANNIAN GEOMETRY
[9]   FERMAT PRINCIPLE IN ARBITRARY GRAVITATIONAL-FIELDS [J].
KOVNER, I .
ASTROPHYSICAL JOURNAL, 1990, 351 (01) :114-120
[10]  
Mawhin J., 1989, CRITICAL POINT THEOR