Scattering state and bound state of scalar field in Schwarzschild spacetime: Exact solution

被引:16
作者
Li, Wen-Du [1 ,2 ]
Chen, Yu-Zhu [1 ,2 ]
Dai, Wu-Sheng [2 ]
机构
[1] Nankai Univ, Chern Inst Math, Theoret Phys Div, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Dept Phys, Tianjin 300350, Peoples R China
关键词
Schwarzschild spacetime; Scalar field; Scattering state; Bound state; COVARIANT PERTURBATION-THEORY; MASSIVE DIRAC FIELDS; BLACK-HOLE; HAWKING RADIATION; FREQUENCIES; WAVES;
D O I
10.1016/j.aop.2019.167919
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The main aim of this paper is twofold. (1) Exact solutions of a scalar field in the Schwarzschild spacetime are presented. The exact wave functions of scattering states and bound-states are presented. Besides the exact solution, we also provide explicit approximate expressions for bound-state eigenvalues and scattering phase shifts. (2) By virtue of the exact solutions, we give a direct calculation for the discontinuous jump on the horizon for massive scalar fields, while in literature such a jump is obtained from an asymptotic solution by an analytic extension treatment. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 63 条
[1]   PHASESHIFTS IN THE COULOMB 2-CENTER PROBLEM [J].
ABRAMOV, DI ;
KAZAKOV, AY ;
PONOMAREV, LI ;
SLAVYANOV, SY ;
SOMOV, LN .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1979, 12 (11) :1761-1773
[2]   The black hole final state for the Dirac fields in Schwarzschild spacetime [J].
Ahn, D. ;
Moon, Y. H. ;
Mann, R. B. ;
Fuentes-Schuller, I. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06)
[3]   SCATTERING OF MASSLESS SCALAR WAVES BY A SCHWARZSCHILD BLACK-HOLE - A PHASE-INTEGRAL STUDY [J].
ANDERSSON, N .
PHYSICAL REVIEW D, 1995, 52 (04) :1808-1820
[4]   COMPLEX ANGULAR-MOMENTUM APPROACH TO BLACK-HOLE SCATTERING [J].
ANDERSSON, N ;
THYLWE, KE .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (12) :2991-3001
[5]  
[Anonymous], 1975, QUANTUM COLLISION TH
[6]  
[Anonymous], 2010, J. High Energy Phys, DOI DOI 10.1007/JHEP03(2010)001
[7]  
[Anonymous], 2002, SCATTERING SCATTERIN
[8]   Vacuum polarization in the Schwarzschild spacetime and dimensional reduction [J].
Balbinot, R ;
Fabbri, A ;
Nicolini, P ;
Frolov, V ;
Sutton, P ;
Zelnikov, A .
PHYSICAL REVIEW D, 2001, 63 (08)
[9]   COVARIANT PERTURBATION-THEORY .3. SPECTRAL REPRESENTATIONS OF THE 3RD-ORDER FORM-FACTORS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1990, 333 (02) :512-524
[10]   COVARIANT PERTURBATION-THEORY .2. 2ND-ORDER IN THE CURVATURE - GENERAL ALGORITHMS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1990, 333 (02) :471-511