Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers

被引:75
作者
Zhu, Huayang [1 ]
Kee, Robert J. [1 ]
机构
[1] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA
关键词
Mixed conduction; Nernst-Planck-Poisson (NPP) model; BZY10; Fuel cell; Electrolyzer; IONIC-ELECTRONIC CONDUCTORS; PROTON CONDUCTIVITY; COMPOSITE CATHODE; OXYGEN ELECTRODES; HIGH-PERFORMANCE; OXIDATION; INTERFACE; STABILITY; EQUATIONS; ANODES;
D O I
10.1016/j.ijhydene.2015.10.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper focuses on modeling membrane-polarization processes within mixed-conducting electrolyte membranes. Because a complete set of thermodynamic and transport properties is available, the electrolyte material used for the study is a yttrium-doped barium zirconate (BaZr0.9 Y-0.1 O3-delta, BZY10). Unlike Polymer Electrolyte Fuel Cells (PEMFC) and Solid-Oxide Fuel Cells (SOFC), the open-circuit voltage cannot be evaluated using gas phase compositions alone. Using a Nernst-Planck-Poisson (NPP) model, an important aspect of the present paper is to develop the theory needed to evaluate open-circuit potential. Focusing on the mixed-conducting membrane alone, the present model neglects all activation and concentration overpotentials. The model is exercised in both fuel-cell and electrolyzer modes, revealing significantly different polarization behaviors. The model based results show how the membrane polarization depends upon operating conditions, including temperature and gas-phase compositions. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2931 / 2943
页数:13
相关论文
共 35 条
[1]   Reaction kinetics on platinum electrode/yttrium-doped barium cerate interface under H2-H2O atmosphere [J].
Akoshima, Satoshi ;
Oishi, Masatsugu ;
Yashiro, Keiji ;
Sato, Kazuhisa ;
Mizusaki, Junichiro .
SOLID STATE IONICS, 2010, 181 (3-4) :240-248
[2]   Stability of BaCeO3-based proton conductors in water-containing atmospheres [J].
Bhide, SV ;
Virkar, AV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (06) :2038-2044
[3]   Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides [J].
Bi, Lei ;
Boulfrad, Samir ;
Traversa, Enrico .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (24) :8255-8270
[4]   BaZr0.8Y0.2O3-δ-NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method [J].
Bi, Lei ;
Fabbri, Emiliana ;
Sun, Ziqi ;
Traversa, Enrico .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (07) :B797-B803
[5]   H-2 oxidation at the interface Ni/Sr0.995Ce0.95Y0.05O2.975 [J].
Bonanos, N ;
Mogensen, M .
SOLID STATE IONICS, 1997, 97 (1-4) :483-488
[6]   Competition between bulk and surface pathways in mixed ionic electronic conducting oxygen electrodes [J].
Coffey, GW ;
Pederson, LR ;
Rieke, PC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :A1139-A1151
[7]   NUMERICAL SOLUTION OF TIME-DEPENDENT NERNST-PLANCK EQUATIONS [J].
COHEN, H ;
COOLEY, JW .
BIOPHYSICAL JOURNAL, 1965, 5 (02) :145-&
[8]   Readily processed protonic ceramic fuel cells with high performance at low temperatures [J].
Duan, Chuancheng ;
Tong, Jianhua ;
Shang, Meng ;
Nikodemski, Stefan ;
Sanders, Michael ;
Ricote, Sandrine ;
Almansoori, Ali ;
O'Hayre, Ryan .
SCIENCE, 2015, 349 (6254) :1321-1326
[9]   Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 °C with Chemically Stable Proton-Conducting Electrolytes [J].
Fabbri, Emiliana ;
Bi, Lei ;
Pergolesi, Daniele ;
Traversa, Enrico .
ADVANCED MATERIALS, 2012, 24 (02) :195-208
[10]   Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells [J].
Fabbri, Emiliana ;
Bi, Lei ;
Tanaka, Hidehiko ;
Pergolesi, Daniele ;
Traversa, Enrico .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (01) :158-166