On Laplacian Eigenvalues of the Zero-Divisor Graph Associated to the Ring of Integers Modulo n

被引:48
|
作者
Rather, Bilal A. [1 ]
Pirzada, Shariefuddin [1 ]
Naikoo, Tariq A. [2 ]
Shang, Yilun [3 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar 190006, India
[2] Islamia Coll Sci & Commerce, Dept Math, Srinagar 190003, India
[3] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
关键词
Laplacian matrix; zero-divisor graph; integers modulo ring; gaussian integer ring; Eulers's totient function;
D O I
10.3390/math9050482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a commutative ring R with identity 1 not equal 0, let the set Z(R) denote the set of zero-divisors and let Z*(R)=Z(R)\{0} be the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by Gamma(R), is a simple graph whose vertex set is Z*(R) and each pair of vertices in Z*(R) are adjacent when their product is 0. In this article, we find the structure and Laplacian spectrum of the zero-divisor graphs Gamma(Z(n)) for n=p(N1)q(N2), where p<q are primes and N-1,N-2 are positive integers.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [41] The maximal degree of a zero-divisor graph
    Mohammad, Husam Q.
    Shuker, Nazar H.
    Khaleel, Luma A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (01)
  • [42] On the diameter of the compressed zero-divisor graph
    Hashemi, E.
    Abdi, M.
    Alhevaz, A.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (11) : 4855 - 4864
  • [43] Signless Laplacian eigenvalues of the zero divisor graph associated to finite commutative ring ZpM1 qM2
    Pirzada, S.
    Rather, Bilal A.
    ul Shaban, Rezwan
    Chishti, T. A.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022,
  • [44] Zero-divisor graph with respect to an ideal
    Maimani, HR
    Pournaki, MR
    Yassemi, S
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 923 - 929
  • [45] On the metric dimension of a zero-divisor graph
    Pirzada, S.
    Raja, Rameez
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1399 - 1408
  • [46] INTERVALS OF POSETS OF A ZERO-DIVISOR GRAPH
    Lagrange, John D.
    MATHEMATICA SLOVACA, 2024, 74 (04) : 803 - 818
  • [47] Computation of Some Graph Energies of the Zero-Divisor Graph Associated with the Commutative Ring Z p 2 [ x ] / ( x 2 )
    Rayer, Clement Johnson
    Jeyaraj, Ravi Sankar
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 15 (02): : 79 - 90
  • [48] On the diameter and girth of a zero-divisor graph, II
    Anderson, David F.
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (02): : 361 - 371
  • [49] On the connectedness of the complement of the zero-divisor graph of a poset
    Devhare, Sarika
    Joshi, Vinayak
    LaGrange, John
    QUAESTIONES MATHEMATICAE, 2019, 42 (07) : 939 - 951
  • [50] AN IDEAL - BASED ZERO-DIVISOR GRAPH OF POSETS
    Elavarasan, Balasubramanian
    Porselvi, Kasi
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (01): : 79 - 85