On generalized normal homogeneous Randers spaces

被引:2
|
作者
Zhang, Lei [1 ,2 ]
Deng, Shaoqiang [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] LPMC, Tianjin 300071, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 90卷 / 3-4期
关键词
generalized normal homogeneous space; Randers space; navigation data; RIEMANNIAN-MANIFOLDS; CURVATURE; METRICS;
D O I
10.5486/PMD.2017.7711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the navigation method to study the geometric properties of generalized normal homogeneous Randers spaces. We first establish a relationship between generalized normal Randers spaces and generalized normal homogeneous Riemannian manifolds, which provides many non-Riemannian examples. We then give a complete classification of generalized normal Randers spaces with positive flag curvature.
引用
收藏
页码:507 / 523
页数:17
相关论文
共 50 条
  • [1] EXISTENCE OF HOMOGENEOUS GEODESICS ON HOMOGENEOUS RANDERS SPACES
    Yan, Zaili
    Deng, Shaoqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02): : 481 - 493
  • [2] On Flag Curvature of Homogeneous Randers Spaces
    Deng, Shaoqiang
    Hu, Zhiguang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (01): : 66 - 81
  • [3] Naturally reductive homogeneous Randers spaces
    Latifi, Dariush
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (12) : 1968 - 1973
  • [4] Curvatures of homogeneous Randers spaces
    Deng, Shaoqiang
    Hu, Zhiguang
    ADVANCES IN MATHEMATICS, 2013, 240 : 194 - 226
  • [5] HOMOGENEOUS RANDERS SPACES ADMITTING JUST TWO HOMOGENEOUS GEODESICS
    Dusek, Zdenek
    ARCHIVUM MATHEMATICUM, 2019, 55 (05): : 281 - 288
  • [6] Clifford-Wolf Homogeneous Randers Spaces
    Xu, Ming
    Deng, Shaoqiang
    JOURNAL OF LIE THEORY, 2013, 23 (03) : 837 - 845
  • [7] The S-curvature of homogeneous Randers spaces
    Deng, Shaoqiang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (01) : 75 - 84
  • [8] On Randers geodesic orbit spaces
    Chen, Huibin
    Zhang, Shaoxiang
    Zhu, Fuhai
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 85
  • [9] Some Einstein-Randers metrics on homogeneous spaces
    Wang, Hui
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4407 - 4414
  • [10] Homogeneous Randers spaces with isotropic S-curvature and positive flag curvature
    Hu, Zhiguang
    Deng, Shaoqiang
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) : 989 - 1009