The number of Hecke eigenvalues of same signs

被引:19
作者
Lau, Y. -K. [2 ]
Wu, J. [1 ,3 ]
机构
[1] Nancy Univ, IECN, CNRS, INRIA, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Shandong Normal Univ, Inst Math Sci, Jinan 250100, Shandong, Peoples R China
关键词
Fourier coefficients of modular forms; B-free numbers; CHEBOTAREV DENSITY-THEOREM; FOURIER COEFFICIENTS; SHORT INTERVALS; FORMS;
D O I
10.1007/s00209-008-0448-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the best possible lower bounds in order of magnitude for the number of positive and negative Hecke eigenvalues. This improves upon a recent work of Kohnen, Lau and Shparlinski. Also, we study an analogous problem for short intervals.
引用
收藏
页码:959 / 970
页数:12
相关论文
共 23 条
[1]   Nonvanishing of Fourier coefficients of newforms in progressions [J].
Alkan, E ;
Zaharescu, A .
ACTA ARITHMETICA, 2005, 116 (01) :81-98
[2]  
[Anonymous], 1981, I HAUTES ETUDES SCI
[3]   The Chebotarev density theorem in short intervals and some questions of Serre [J].
Balog, A ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2001, 91 (02) :356-371
[4]   THE APPROXIMATE FUNCTIONAL EQUATION FOR A CLASS OF ZETA-FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
MATHEMATISCHE ANNALEN, 1963, 152 (01) :30-64
[5]   The square sieve and the Lang-Trotter conjecture [J].
Cojocaru, AC ;
Fouvry, E ;
Murty, MR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06) :1155-1177
[6]  
Deligne P., 1981, Publ. Math. IHES., V52, P313
[7]  
Deligne P., 1974, PUBL MATH-PARIS, V43, P273, DOI 10.1007/BF02684373
[8]  
ELKIES N, 1992, JOURN AR 1989 LUM 19
[9]  
ELKIES N, 1991, JOURN AR 1989 LUM 19
[10]  
Erdos P., 1966, ACTA ARITH, V12, P175