Reiter's properties (P1) and (P2) for locally compact quantum groups

被引:6
作者
Daws, Matthew [2 ]
Runde, Volker [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
基金
加拿大自然科学与工程研究理事会;
关键词
Amenability; Co-amenability; Leptin's theorem; Locally compact quantum groups; Operator spaces; Reiter's property (P-1); Reiter's property (P-2); AMENABILITY; ALGEBRA; SPACES;
D O I
10.1016/j.jmaa.2009.11.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A locally compact group G is amenable if and only if it has Reiter's property (P-p) for p = 1 or, equivalently, all p is an element of [1, infinity), i.e., there is a net (m(alpha))(alpha) of non-negative norm one functions in L-p(G) such that lim(alpha) sup(x is an element of K) parallel to L(x-1)m(alpha) - m(alpha)parallel to(p) = 0 for each compact subset K subset of G (L(x-1)m(alpha) stands for the left translate of m(alpha) by x(-1)). We extend the definitions of properties (P-1) and (P-2) from locally compact groups to locally compact quantum groups in the sense of J. Kustermans and S. Vaes. We show that a locally compact quantum group has (P-1) if and only if it is amenable and that it has (P-2) if and only if its dual quantum group is co-amenable. As a consequence, (P-2) implies (P-1). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:352 / 365
页数:14
相关论文
共 36 条
[21]  
PAULSEN V.I., 2002, CAMBRIDGE STUD ADV M, V78
[22]  
Pier JP, 1984, PURE APPL MATH
[23]  
Pisier G., 2003, INTRO OPERATOR SPACE, V294
[24]  
REITER H, 2000, LONDON MATH SOC MONO, V22
[25]   Amenability of Hopf von Neumann algebras and Kac algebras [J].
Ruan, ZJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 139 (02) :466-499
[26]  
Runde V., 2002, LECT NOTES MATH, V1774
[27]  
Runde V, 2008, J OPERAT THEOR, V60, P415
[28]  
Takesaki M., 2003, Encyclopaedia of Mathematical Sciences, vol. 125. Operator Algebras and Non-commutative Geometry, V125, DOI DOI 10.1007/978-3-662-10453-8
[29]  
TERP M, 1982, J OPERAT THEOR, V8, P327
[30]   Amenable discrete quantum groups [J].
Tomatsu, Reiji .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) :949-964