SEMILINEAR CAPUTO TIME-FRACTIONAL PSEUDO-PARABOLIC EQUATIONS

被引:52
作者
Nguyen Huy Tuan [1 ,2 ,3 ]
Vo Van Au [4 ,5 ]
Xu, Runzhang [6 ]
机构
[1] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[4] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[5] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[6] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Well-posedness; blow-up; Caputo fractional; pseudo-parabolic equation; GLOBAL EXISTENCE; BLOW-UP; WELL-POSEDNESS; DIFFUSION; MODELS; DECAY; LAPLACIAN; SYSTEM; GUIDE;
D O I
10.3934/cpaa.2020282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers two problems: the initial boundary value problem of nonlinear Caputo time-fractional pseudo-parabolic equations with fractional Laplacian, and the Cauchy problem (initial value problem) of Caputo time-fractional pseudo-parabolic equations. For the first problem with the source term satisfying the globally Lipschitz condition, we establish the local well-posedness theory including existence, uniqueness and regularity of the local solution, and the further local existence theory related to the finite time blow-up are also obtained for the problem with logarithmic nonlinearity. For the second problem with the source term satisfying the globally Lipschitz condition, we prove the global existence theorem.
引用
收藏
页码:583 / 621
页数:39
相关论文
共 62 条
[1]  
Agarwal RP, 2001, CAMB TRACT MATH, V141
[2]   Fractional flows driven by subdifferentials in Hilbert spaces [J].
Akagi, Goro .
ISRAEL JOURNAL OF MATHEMATICS, 2019, 234 (02) :809-862
[3]  
Allouba H, 2001, ANN PROBAB, V29, P1780
[4]  
Andrade B., 2017, Z ANGEW MATH PHYS, V68
[5]   On a class of fully nonlinear parabolic equations [J].
Antontsev, Stanislav ;
Shmarev, Sergey .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :79-100
[6]   Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations [J].
Arrieta, JM ;
Carvalho, AN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) :285-310
[7]   INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS [J].
BARROW, JD ;
PARSONS, P .
PHYSICAL REVIEW D, 1995, 52 (10) :5576-5587
[8]   SMALL PERTURBATION OF A SEMILINEAR PSEUDO-PARABOLIC EQUATION [J].
Cao, Yang ;
Yin, Jingxue .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) :631-642
[9]   Cauchy problems of semilinear pseudo-parabolic equations [J].
Cao, Yang ;
Yin, Jingxue ;
Wang, Chunpeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (12) :4568-4590
[10]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&