Enhanced Ultraviolet Damage Resistance in Magnesium Doped Lithium Niobate Crystals through Zirconium Co-Doping

被引:18
作者
Kong, Tengfei [1 ]
Luo, Yi [2 ]
Wang, Weiwei [3 ]
Kong, Hanxiao [4 ]
Fan, Zhiqin [1 ]
Liu, Hongde [5 ,6 ,7 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou 450001, Peoples R China
[2] Henan Univ, Minist Educ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
[4] Hebei Univ, Coll Chem & Environm Sci, Baoding 071002, Peoples R China
[5] Nankai Univ, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China
[6] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[7] Nankai Univ, TEDA Inst Appl Phys, Tianjin 300071, Peoples R China
关键词
lithium niobate; ultraviolet damage resistance; defects; first-principles calculations;
D O I
10.3390/ma14041017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MgO-doped LiNbO3 (LN:Mg) is famous for its high resistance to optical damage, but this phenomenon only occurs in visible and infrared regions, and its photorefraction is not decreased but enhanced in ultraviolet region. Here we investigated a series of ZrO2 co-doped LN:Mg (LN:Mg,Zr) regarding their ultraviolet photorefractive properties. The optical damage resistance experiment indicated that the resistance against ultraviolet damage of LN:Mg was significantly enhanced with increased ZrO2 doping concentration. Moreover, first-principles calculations manifested that the enhancement of ultraviolet damage resistance for LN:Mg,Zr was mainly determined by both the increased band gap and the reduced ultraviolet photorefractive center O2-/-. So, LN:Mg,Zr crystals would become an excellent candidate for ultraviolet nonlinear optical material.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 30 条
[1]   OPTICALLY-INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LINBO3 AND LITAO3 - (FERROELECTRIC MATERIALS - NONLINEAR OPTICS - E) [J].
ASHKIN, A ;
BOYD, GD ;
DZIEDZIC, JM ;
SMITH, RG ;
BALLMAN, AA ;
LEVINSTEIN, JJ ;
NASSAU, K .
APPLIED PHYSICS LETTERS, 1966, 9 (01) :72-+
[2]   Control of Intrinsic Defects in Lithium Niobate Single Crystal for Optoelectronic Applications [J].
Bhatt, Rajeev ;
Bhaumik, Indranil ;
Ganesamoorthy, Sarveswaran ;
Bright, Riscob ;
Soharab, Mohammad ;
Karnal, Ashwani Kumar ;
Gupta, Pradeep Kumar .
CRYSTALS, 2017, 7 (02)
[3]   INCREASED OPTICAL-DAMAGE RESISTANCE IN LITHIUM-NIOBATE [J].
BRYAN, DA ;
GERSON, R ;
TOMASCHKE, HE .
APPLIED PHYSICS LETTERS, 1984, 44 (09) :847-849
[4]   LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects [J].
Carrascosa, M. ;
Garcia-Cabanes, A. ;
Jubera, M. ;
Ramiro, J. B. ;
Agullo-Lopez, F. .
APPLIED PHYSICS REVIEWS, 2015, 2 (04)
[5]   Nonlinear mode switching in lithium niobate nanowaveguides to control light directionality [J].
Escale, Marc Reig ;
Sergeyev, Anton ;
Geiss, Reinhard ;
Grange, Rachel .
OPTICS EXPRESS, 2017, 25 (04) :3013-3023
[6]  
FOLDVARI I, 1984, CRYST RES TECHNOL, V19, P1659, DOI 10.1002/crat.2170191231
[7]   Evidence for light-induced hole polarons in LiNbO3 -: art. no. 067404 [J].
Herth, P ;
Granzow, T ;
Schaniel, D ;
Woike, T ;
Imlau, M ;
Krätzig, E .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[8]   COUPLED WAVE THEORY FOR THICK HOLOGRAM GRATINGS [J].
KOGELNIK, H .
BELL SYSTEM TECHNICAL JOURNAL, 1969, 48 (09) :2909-+
[9]   Room temperature 90° phase-matching in zirconium and magnesium co-doped lithium niobate crystals [J].
Kong, Tengfei ;
Liu, Hongde ;
Ge, Xinyu ;
Qu, Da ;
Liu, Shiguo ;
Chen, Shaolin ;
Zhang, Ling ;
Kong, Yongfa ;
Rupp, Romano ;
Xu, Jingjun .
SCIENTIFIC REPORTS, 2018, 8
[10]   Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices [J].
Kong, Yongfa ;
Bo, Fang ;
Wang, Weiwei ;
Zheng, Dahuai ;
Liu, Hongde ;
Zhang, Guoquan ;
Rupp, Romano ;
Xu, Jingjun .
ADVANCED MATERIALS, 2020, 32 (03)