Electrochemical performance of LiFePO4 cathode material for Li-ion battery

被引:1
作者
Li Shuzhong
Li Chao [1 ]
Fan Yanliang
Xu Jiaqiang
Wang Tao
Yang Shuting
机构
[1] Engn Res Ctr New Power Source Mat Henan Prov, Xinxiang 453002, Peoples R China
[2] Zhengzhou Inst Light Ind, Coll Mat Sci & Chem Engn, Dept Appl Chem, Zhengzhou 450002, Peoples R China
[3] Hanan Normal Univ, Coll Chem & Environm Sci, Dept Chem Engn, Xinxiang 453007, Peoples R China
来源
RARE METALS | 2006年 / 25卷
关键词
lithium ion batteries; LFePO4; doping; electrochemical performance;
D O I
10.1016/S1001-0521(07)60046-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the search for improved materials for rechargeable lithium batteries, LiFePO4 offers interesting possibilities because of its low raw materials cost, environmental friendliness and safety. The main drawback with using the material is its poor electronic conductivity and this limitation has to be overcome. Here Al-doped LiFePO4/C composite cathode materials were prepared by a polymer-network synthesis technique. Testing of X-ray diffraction, charge-discharge, and cyclic voltammetry were carried out for its performance. Results show that Al-doped LiFePO4/C composite cathode materials have a high initial capacity, good cycle stability and excellent low temperature performance. The electrical conductivity of LiFePO4 material can be obviously improved by doping Al. The better electrochemical performances of Al-doped LiFePO4/C composite cathode materials have a connection with its conductivity.
引用
收藏
页码:62 / 66
页数:5
相关论文
共 12 条
[1]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[2]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[3]  
CHIANG YM, Patent No. 20042005265
[4]   Synthesis of olivine-type LiFePO4 by emulsion-drying method [J].
Cho, TH ;
Chung, HT .
JOURNAL OF POWER SOURCES, 2004, 133 (02) :272-276
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[7]   Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery [J].
Lee, SW ;
Kim, KS ;
Moon, HS ;
Kim, HJ ;
Cho, BW ;
Cho, WI ;
Ju, JB ;
Park, JW .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :150-155
[8]   Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials [J].
Morgan, D ;
Van der Ven, A ;
Ceder, G .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (02) :A30-A32
[9]   Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1188-1194
[10]   Issues and challenges facing rechargeable lithium batteries [J].
Tarascon, JM ;
Armand, M .
NATURE, 2001, 414 (6861) :359-367