Parallel-in-time Parareal implementation using PETSc

被引:0
|
作者
Caceres Silva, Juan Jose [1 ]
Baran, Benjamin [1 ,2 ,3 ]
Schaerer, Christian [2 ]
机构
[1] Univ Catolica Nuestra Senora Asuncion, Fac Ciencias & Tecnol, Asuncion, Paraguay
[2] Univ Nacl Asuncion, Fac Politecn, LCCA, Campus San Lorenzo, Paraguay
[3] Univ Nacl Este, Fac Politecn, Ciudad Del Este, Paraguay
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work presents implementation details of the Parareal method using PETSc in a distributed and multicore architecture, which is used for the resolution of a parabolic optimal control problem. To this end, this optimization problem is discretized yielding a large KKT linear system. In the context of this work, the Parareal method allows not only to reach problem sizes which normally can not be solved using a single computer, but also allows to speed up the computational resolution time. The implementation developed in this work offers a parallelization relative efficiency for the strong scaling of approximately 70% each time the processes count doubles, while for the weak scaling it is 75% each time the processes count doubles for a constant solution size per process and 96% each time the processes count doubles for a constant data size per process.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Implementation of parallel-in-time Newton method for transient stability analysis on a message passing multicomputer
    Chao, H
    POWERCON 2002: INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS 1-4, PROCEEDINGS, 2002, : 1239 - 1243
  • [22] A Parallel-in-Time Implementation of the Numerov Method for Wave Equations (vol 90, 20, 2022)
    Sun, Yafei
    Wu, Shu-Lin
    Xu, Yingxiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (03)
  • [23] Parallel-in-time optimization of induction motors
    Jens Hahne
    Björn Polenz
    Iryna Kulchytska-Ruchka
    Stephanie Friedhoff
    Stefan Ulbrich
    Sebastian Schöps
    Journal of Mathematics in Industry, 13
  • [24] Parallel-in-time integration of kinematic dynamos
    Clarke A.T.
    Davies C.J.
    Ruprecht D.
    Tobias S.M.
    Journal of Computational Physics: X, 2020, 7
  • [25] Stochastic Power System Dynamic Simulation Using Parallel-in-Time Algorithm
    Park, Byungkwon
    IEEE ACCESS, 2024, 12 : 28500 - 28510
  • [26] Parallel-in-Time Probabilistic Numerical ODE Solvers
    Bosch, Nathanael
    Corenflos, Adrien
    Obi, Fatemeh Yagho
    Tronarp, Filip
    Hennig, Philipp
    Sarkka, Simo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [27] Combining Coarse and Fine Physics for Manipulation Using Parallel-in-Time Integration
    Agboh, Wisdom C.
    Ruprecht, Daniel
    Dogar, Mehmet R.
    ROBOTICS RESEARCH: THE 19TH INTERNATIONAL SYMPOSIUM ISRR, 2022, 20 : 725 - 740
  • [28] Samsara Parallel: A Non-BSP Parallel-in-Time Model
    Chen, Yifeng
    Huang, Kun
    Wang, Bei
    Li, Guohui
    Cui, Xiang
    ACM SIGPLAN NOTICES, 2016, 51 (08) : 401 - 402
  • [29] A UNIFIED ANALYSIS FRAMEWORK FOR ITERATIVE PARALLEL-IN-TIME ALGORITHMS
    Gander, Martin J.
    Lunet, Thibaut
    Ruprecht, Daniel
    Speck, Robert
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (05): : A2275 - A2303
  • [30] AN EFFICIENT PARALLEL-IN-TIME METHOD FOR OPTIMIZATION WITH PARABOLIC PDEs
    Goetschel, Sebastian
    Minion, Michael L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : C603 - C626