Natural frequencies and modes of a Timoshenko beam

被引:87
|
作者
van Rensburg, N. F. J.
van der Merwe, A. J.
机构
[1] Cape Peninsula Univ Technol, Dept Mech Engn, ZA-8000 Cape Town, South Africa
[2] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
Timoshenko beam; Euler-Bernoulli beam; natural frequencies; eigenvalues;
D O I
10.1016/j.wavemoti.2006.06.008
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we present a systematic approach to solving the eigenvalue problems associated with the uniform Timoshenko beam model. Properties of the natural frequencies and modes are discussed for the pinned-pinned and cantilever beam, e.g., double eigenvalues, estimates for small and large eigenvalues, significance of dimensionless parameters and remarkable mode shapes. Our results expand on and complement existing results. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 50 条
  • [21] Natural Frequencies of Multistep Functionally Graded Beam with Cracks
    N. T. Khiem
    T. V. Lien
    V. T. A. Ninh
    Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 43 : 881 - 916
  • [22] CANTILEVER BEAM NATURAL FREQUENCIES IN CENTRIFUGAL INERTIA FIELD
    Jivkov, V. S.
    Zahariev, E. V.
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS-BULGARIA, 2018, 48 (01): : 37 - 45
  • [23] Natural Frequencies of Multistep Functionally Graded Beam with Cracks
    Khiem, N. T.
    Lien, T. V.
    Ninh, V. T. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2019, 43 (Suppl 1) : 881 - 916
  • [24] Rapid Stabilization of Timoshenko Beam by PDE Backstepping
    Chen, Guangwei
    Vazquez, Rafael
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 1141 - 1148
  • [25] Natural Frequency Numerical Solution to an Axially Moving Timoshenko Beam on Fixed Supports
    Yang, Zhigang
    Li, Wanzhen
    Yang, Zhenxing
    Zhang, Jiguang
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ADVANCED DESIGN AND MANUFACTURING ENGINEERING, 2015, 39 : 903 - 907
  • [26] Identification of fixedness and loading of an end of the Euler–Bernoulli beam by the natural frequencies of its vibrations
    Aitbaeva A.A.
    Akhtyamov A.M.
    Journal of Applied and Industrial Mathematics, 2017, 11 (1) : 1 - 7
  • [27] Local coordinate systems-based method to analyze high-order modes of n-step Timoshenko beam
    Cao, M. S.
    Xu, W.
    Su, Z.
    Ostachowicz, W.
    Xia, N.
    JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (01) : 89 - 102
  • [28] NATURAL FREQUENCIES AND MODES OF OUT-OF-PLANE VIBRATIONS A FIXED RING
    Zakrzhevskii, A. E.
    Khoroshilov, V. S.
    INTERNATIONAL APPLIED MECHANICS, 2011, 47 (06) : 745 - 753
  • [29] EXPONENTIAL STABILIZATION OF TIMOSHENKO BEAM WITH INPUT AND OUTPUT DELAYS
    Liu, Xiu-Fang
    Xu, Gen-Qi
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2016, 6 (02) : 271 - 292
  • [30] Stabilization of the nonuniform Timoshenko beam
    Ammar-Khodja, Farid
    Kerbal, Sebti
    Soufyane, Abdelaziz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 525 - 538