Gevrey Regularity for the Noncutoff Nonlinear Homogeneous Boltzmann Equation with Strong Singularity

被引:2
|
作者
Lin, Shi-you [1 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
ANGULAR CUTOFF; CAUCHY-PROBLEM;
D O I
10.1155/2014/584169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem of the nonlinear spatially homogeneous Boltzmann equation without angular cutoff is studied. By using analytic techniques, one proves the Gevrey regularity of the C-infinity solutions in non-Maxwellian and strong singularity cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] LP-ESTIMATES FOR THE NONLINEAR SPATIALLY HOMOGENEOUS BOLTZMANN-EQUATION
    GUSTAFSSON, T
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 92 (01) : 23 - 57
  • [42] PROPAGATION OF MOMENTS AND SHARP CONVERGENCE RATE FOR INHOMOGENEOUS NONCUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIALS
    Cao, Chuqi
    He, Ling-Bing
    Ji, Jie
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 1321 - 1426
  • [43] Regularity of the gain term and strong L(1) convergence to equilibrium for the relativistic Boltzmann equation
    Andreasson, H
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (05) : 1386 - 1405
  • [44] On the spatially homogeneous Boltzmann equation
    Mischler, S
    Wennberg, B
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (04): : 467 - 501
  • [45] Gevrey regularity for nonlinear analytic parabolic equations on the sphere
    Cao C.
    Rammaha M.A.
    Titi E.S.
    Journal of Dynamics and Differential Equations, 2000, 12 (2) : 411 - 433
  • [46] HOMOGENEOUS SOLUTIONS OF BOLTZMANN EQUATION
    FROHN, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1967, S 47 : T144 - &
  • [47] Regularity of the Boltzmann equation in convex domains
    Guo, Yan
    Kim, Chanwoo
    Tonon, Daniela
    Trescases, Ariane
    INVENTIONES MATHEMATICAE, 2017, 207 (01) : 115 - 290
  • [48] Regularity of the Boltzmann equation in convex domains
    Yan Guo
    Chanwoo Kim
    Daniela Tonon
    Ariane Trescases
    Inventiones mathematicae, 2017, 207 : 115 - 290
  • [49] Gevrey Smoothing for Weak Solutions of the Fully Nonlinear Homogeneous Boltzmann and Kac Equations Without Cutoff for Maxwellian Molecules
    Jean-Marie Barbaroux
    Dirk Hundertmark
    Tobias Ried
    Semjon Vugalter
    Archive for Rational Mechanics and Analysis, 2017, 225 : 601 - 661
  • [50] Gevrey Smoothing for Weak Solutions of the Fully Nonlinear Homogeneous Boltzmann and Kac Equations Without Cutoff for Maxwellian Molecules
    Barbaroux, Jean-Marie
    Hundertmark, Dirk
    Ried, Tobias
    Vugalter, Semjon
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (02) : 601 - 661