Gevrey Regularity for the Noncutoff Nonlinear Homogeneous Boltzmann Equation with Strong Singularity

被引:2
|
作者
Lin, Shi-you [1 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
ANGULAR CUTOFF; CAUCHY-PROBLEM;
D O I
10.1155/2014/584169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem of the nonlinear spatially homogeneous Boltzmann equation without angular cutoff is studied. By using analytic techniques, one proves the Gevrey regularity of the C-infinity solutions in non-Maxwellian and strong singularity cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] REGULARITY OF SOLUTIONS FOR SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF
    Huo, Zhaohui
    Morimoto, Yoshinori
    Ukai, Seiji
    Yang, Tong
    KINETIC AND RELATED MODELS, 2008, 1 (03) : 453 - 489
  • [22] On the Well-Posedness of the Spatially Homogeneous Boltzmann Equation with a Moderate Angular Singularity
    Nicolas Fournier
    Clément Mouhot
    Communications in Mathematical Physics, 2009, 289 : 803 - 824
  • [23] On the Well-Posedness of the Spatially Homogeneous Boltzmann Equation with a Moderate Angular Singularity
    Fournier, Nicolas
    Mouhot, Clement
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (03) : 803 - 824
  • [24] On higher regularity for the Westervelt equation with strong nonlinear damping
    Nikolic, Vanja
    Kaltenbacher, Barbara
    APPLICABLE ANALYSIS, 2016, 95 (12) : 2824 - 2840
  • [25] Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation
    Chu, Jixun
    Coron, Jean-Michel
    Shang, Peipei
    Tang, Shu-Xia
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (02) : 201 - 212
  • [26] Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation
    Jixun CHU
    Jean-Michel CORON
    Peipei SHANG
    Shu-Xia TANG
    ChineseAnnalsofMathematics,SeriesB, 2018, (02) : 201 - 212
  • [27] A new characterization and global regularity of infinite energy solutions to the homogeneous Boltzmann equation
    Morimoto, Yoshinori
    Wang, Shuaikun
    Yang, Tong
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (03): : 809 - 829
  • [28] SHARP REGULARITY PROPERTIES FOR THE NON-CUTOFF SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION
    Glangetas, Leo
    Li, Hao-Guang
    Xu, Chao-Jiang
    KINETIC AND RELATED MODELS, 2016, 9 (02) : 299 - 371
  • [29] Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation
    Jixun Chu
    Jean-Michel Coron
    Peipei Shang
    Shu-Xia Tang
    Chinese Annals of Mathematics, Series B, 2018, 39 : 201 - 212
  • [30] Gevrey regularity for nonlinear analytic parabolic equations
    Ferrari, AB
    Titi, ES
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (1-2) : 1 - 16