Orthogonality of the Meixner-Pollaczek polynomials beyond Favard's theorem

被引:1
|
作者
Moreno, Samuel G. [1 ]
Garcia-Caballero, Esther M. [1 ]
机构
[1] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
Meixner-Pollaczek polynomials; Favard's theorem; non-standard inner product; SOBOLEV ORTHOGONALITY;
D O I
10.36045/bbms/1366306719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the family of Meixner-Pollaczek polynomials {P-n((lambda))(.;phi)}(n = 0)(infinity), classically defined for lambda > 0 and 0 < phi < pi, to arbitrary complex values of the parameter lambda, in such a way that both polynomial systems (the classical and the new generalized ones) share the same three term recurrence relation. The values lambda(N) = (1 - N)/2, with N a positive integer, are the only ones for which no orthogonality condition can be deduced from Favard's theorem. In this paper we introduce a non-standard discrete-continuous inner product with respect to which the generalized Meixner-Pollaczek polynomials {P-n((lambda N))(.;phi)}(n = 0)(infinity) become orthogonal.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 50 条
  • [41] Favard's theorem and its applications
    不详
    EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (04): : 142 - 147
  • [42] A Christoffel-Darboux formula and a Favard's theorem for orthogonal Laurent polynomials on the unit circle
    Cruz-Barroso, R
    González-Vera, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 179 (1-2) : 157 - 173
  • [43] Divided-difference equation, inversion, connection, multiplication and linearization formulae of the continuous Hahn and the Meixner–Pollaczek polynomials
    D. D. Tcheutia
    P. Njionou Sadjang
    W. Koepf
    M. Foupouagnigni
    The Ramanujan Journal, 2018, 45 : 33 - 56
  • [44] Shohat-Favard and Chebyshev's methods in d-orthogonality
    da Rocha, Z
    NUMERICAL ALGORITHMS, 1999, 20 (2-3) : 139 - 164
  • [45] Shohat-Favard and Chebyshev’s methods in d-orthogonality
    Zélia da Rocha
    Numerical Algorithms, 1999, 20 : 139 - 164
  • [46] Extensions of discrete classical orthogonal polynomials beyond the orthogonality
    Costas-Santos, R. S.
    Sanchez-Lara, J. F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) : 440 - 451
  • [47] Asymptotics of orthogonal polynomials beyond the scope of Szego's theorem
    Peherstorfer, F.
    Volberg, A.
    Yuditskii, P.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2006, 40 (04) : 264 - 272
  • [48] Asymptotics of orthogonal polynomials beyond the scope of Szegő’s theorem
    F. Peherstorfer
    A. Volberg
    P. Yuditskii
    Functional Analysis and Its Applications, 2006, 40 : 264 - 272
  • [49] Favard's theorem for almost periodic processes on Banach space
    Hu, ZS
    Mingarelli, AB
    DYNAMIC SYSTEMS AND APPLICATIONS, 2005, 14 (3-4): : 615 - 631
  • [50] A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula
    Castillo, K.
    Costa, M. S.
    Ranga, A. Sri
    Veronese, D. O.
    JOURNAL OF APPROXIMATION THEORY, 2014, 184 : 146 - 162