Orthogonality of the Meixner-Pollaczek polynomials beyond Favard's theorem

被引:1
|
作者
Moreno, Samuel G. [1 ]
Garcia-Caballero, Esther M. [1 ]
机构
[1] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
Meixner-Pollaczek polynomials; Favard's theorem; non-standard inner product; SOBOLEV ORTHOGONALITY;
D O I
10.36045/bbms/1366306719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the family of Meixner-Pollaczek polynomials {P-n((lambda))(.;phi)}(n = 0)(infinity), classically defined for lambda > 0 and 0 < phi < pi, to arbitrary complex values of the parameter lambda, in such a way that both polynomial systems (the classical and the new generalized ones) share the same three term recurrence relation. The values lambda(N) = (1 - N)/2, with N a positive integer, are the only ones for which no orthogonality condition can be deduced from Favard's theorem. In this paper we introduce a non-standard discrete-continuous inner product with respect to which the generalized Meixner-Pollaczek polynomials {P-n((lambda N))(.;phi)}(n = 0)(infinity) become orthogonal.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 50 条