Robust Multi-Dimensional Model Order Estimation Using LineAr Regression of Global Eigenvalues (LaRGE)

被引:2
作者
Korobkov, Alexey Alexandrovich [1 ]
Diugurova, Marina Konstantinovna [1 ]
Haueisen, Jens [2 ]
Haardt, Martin [3 ]
机构
[1] Kazan Natl Res Tech Univ, Inst Radioelect Photon & Digital Technol, Kazan 420111, Russia
[2] Ilmenau Univ Technol, Inst Biomed Engn & Informat, D-98684 Ilmenau, Germany
[3] Ilmenau Univ Technol, Commun Res Lab, D-98684 Ilmenau, Germany
关键词
Eigenvalue; global eigenvalue; tensor; the model order of multi-dimensional data; the rank of the tensor; SINGULAR-VALUE DECOMPOSITION; TENSOR DECOMPOSITIONS; SELECTION; NUMBER;
D O I
10.1109/TSP.2022.3222737
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The efficient estimation of an approximate model order is very important for real applications with multi-dimensional low-rank data that may be corrupted by additive noise. In this paper, we present a novel robust to noise method for model order estimation of noise-corrupted multi-dimensional low-rank data based on the LineAr Regression of Global Eigenvalues (LaRGE). The LaRGE method uses the multi-linear singular values obtained from the HOSVD of the measurement tensor to construct global eigenvalues. In contrast to the Modified Exponential Test (EFT) that also exploits the approximate exponential profile of the noise eigenvalues, LaRGE does not require the calculation of the probability of false alarm. Moreover, LaRGE achieves a significantly improved performance in comparison with popular state-of-the-art methods. It is well suited for the analysis of noisy multidimensional low-rank data including biomedical signals. The excellent performance of the LaRGE method is illustrated via simulations and results obtained from EEG recordings.
引用
收藏
页码:5751 / 5764
页数:14
相关论文
共 30 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] FAST MULTILINEAR SINGULAR VALUE DECOMPOSITION FOR STRUCTURED TENSORS
    Badeau, Roland
    Boyer, Remy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1008 - 1021
  • [3] ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION
    CARROLL, JD
    CHANG, JJ
    [J]. PSYCHOMETRIKA, 1970, 35 (03) : 283 - &
  • [4] Multi-dimensional model order selection
    Carvalho Lustosa da Costa, Joao Paulo
    Roemer, Florian
    Haardt, Martin
    de Sousa, Rafael Timoteo, Jr.
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [5] Tensor Decompositions for Signal Processing Applications
    Cichocki, Andrzej
    Mandic, Danilo P.
    Anh Huy Phan
    Caiafa, Cesar F.
    Zhou, Guoxu
    Zhao, Qibin
    De Lathauwer, Lieven
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) : 145 - 163
  • [6] da Costa JPCL, 2007, CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, P412
  • [7] Robust R-D Parameter Estimation via Closed-Form PARAFAC
    da Costa, Joao Paulo C. L.
    Roemer, Florian
    Weis, Martin
    Haardt, Martin
    [J]. 2010 INTERNATIONAL ITG WORKSHOP ON SMART ANTENNAS (WSA 2010), 2010, : 99 - 106
  • [8] A multilinear singular value decomposition
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1253 - 1278
  • [9] Edlin R., 2015, COST EFFECTIVENESSMO, P119
  • [10] NORMO: A new method for estimating the number of components in CP tensor decomposition
    Fernandes, Sofia
    Fanaee-T, Hadi
    Gama, Joao
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96