Pre-established entanglement distribution algorithm in quantum networks

被引:5
作者
Wang, Yazi [1 ]
Yu, Xiaosong [1 ]
Zhao, Yongli [1 ]
Nag, Avishek [2 ]
Zhang, Jie [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
[2] Univ Coll Dublin, Dublin 4, Ireland
基金
中国国家自然科学基金;
关键词
ATOMIC ENSEMBLES; REPEATERS; TELEPORTATION; PURIFICATION;
D O I
10.1364/JOCN.465432
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As the basic principle of quantum networks, quantum entanglement can enable important quantum applications such as teleportation and quantum-key distribution. To realize wide-area quantum communication, entanglement establishment between two remote communication parties is vital, and it requires effective entanglement distribution strategies. Entanglement distribution network models of distributed and centralized entangled pair sources are constructed, based on which two entanglement-distribution algorithms are proposed, i.e., the real-time entanglement distribution (R-TED) algorithm and the pre-established entanglement distribution (P-EED) algorithm, to achieve end-to-end multi-hop entanglement establishment. For the former, the objective is to build long-distance entanglements via hop-by-hop entanglement tentatively and entanglement swapping to finally glue them together. For the latter, which uses pre-established entanglement, entanglements can be established in advance to patch multiple link-level entanglements via entanglement swapping. Simulation results show that as the number of time slots increases, the P-EED algorithm is more efficient and has higher entanglement establishment probability than the R-TED algorithm to establish end-to-end entanglement; while there are fewer memory cells in a quantum memory, such as 10, the R-TED algorithm provides more stable entanglement distribution compared to the P-EED algorithm. (C) 2022 Optica Publishing Group
引用
收藏
页码:1020 / 1033
页数:14
相关论文
共 40 条
[1]   Flexible entanglement-distribution network with an AlGaAs chip for secure communications [J].
Appas, Felicien ;
Baboux, Florent ;
Amanti, Maria I. ;
Lemaitre, Aristide ;
Boitier, Fabien ;
Diamanti, Eleni ;
Ducci, Sara .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[2]   Aggregating quantum repeaters for the quantum internet [J].
Azuma, Koji ;
Kato, Go .
PHYSICAL REVIEW A, 2017, 96 (03)
[3]   Quantum computing using dissipation to remain in a decoherence-free subspace [J].
Beige, A ;
Braun, D ;
Tregenna, B ;
Knight, PL .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1762-1765
[4]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[5]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]  
Chakraborty K, 2019, Arxiv, DOI arXiv:1907.11630
[8]   Experimental nested purification for a linear optical quantum repeater [J].
Chen, Luo-Kan ;
Yong, Hai-Lin ;
Xu, Ping ;
Yao, Xing-Can ;
Xiang, Tong ;
Li, Zheng-Da ;
Liu, Chang ;
Lu, He ;
Liu, Nai-Le ;
Li, Li ;
Yang, Tao ;
Peng, Cheng-Zhi ;
Zhao, Bo ;
Chen, Yu-Ao ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2017, 11 (11) :695-+
[9]   Multiplexed memory-insensitive quantum repeaters [J].
Collins, O. A. ;
Jenkins, S. D. ;
Kuzmich, A. ;
Kennedy, T. A. B. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[10]  
Crepeau C., 2002, STOC 02 PROC 34RD AN, P643, DOI [10.1145/509907.510000, DOI 10.1145/509907.510000]