Epitope Mapping of Therapeutic Antibodies Targeting Human LAG3

被引:9
作者
Agnihotri, Pragati [1 ,2 ]
Mishra, Arjun K. [1 ,2 ]
Agarwal, Priyanka [3 ,4 ]
Vignali, Kate M. [4 ]
Workman, Creg J. [3 ,4 ]
Vignali, Dario A. A. [3 ,4 ,5 ]
Mariuzza, Roy A. [1 ,2 ,6 ]
机构
[1] Univ Maryland, Inst Biosci & Biotechnol Res, WM Keck Lab Struct Biol, Rockville, MD USA
[2] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD USA
[3] Univ Pittsburgh, Sch Med, Dept Immunol, Pittsburgh, PA USA
[4] UPMC Hillman Canc Ctr, Tumor Microenvironm Ctr, Pittsburgh, PA USA
[5] UPMC Hillman Canc Ctr, Canc Immunol & Immunotherapy Program, Pittsburgh, PA USA
[6] Univ Maryland, Inst Biosci & Biotechnol Res, 9600 Gudelsky Dr, Rockville, MD 20850 USA
关键词
BINDING-SITE; RECEPTORS; CELLS;
D O I
10.4049/jimmunol.2200309
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Lymphocyte activation gene 3 protein (LAG3; CD223) is an inhibitory receptor that is highly upregulated on exhausted T cells in tumors and chronic viral infection. Consequently, LAG3 is now a major immunotherapeutic target for the treatment of cancer, and many mAbs against human (h) LAG3 (hLAG3) have been generated to block its inhibitory activity. However, little or no information is available on the epitopes they recognize. We selected a panel of seven therapeutic mAbs from the patent literature for detailed characterization. These mAbs were expressed as Fab or single-chain variable fragments and shown to bind hLAG3 with nanomolar affinities, as measured by biolayer interferometry. Using competitive binding assays, we found that the seven mAbs recognize four distinct epitopes on hLAG3. To localize the epitopes, we carried out epitope mapping using chimeras between hLAG3 and mouse LAG3. All seven mAbs are directed against the first Ig-like domain (D1) of hLAG3, despite their different origins. Three mAbs almost exclusively target a unique 30-residue loop of D1 that forms at least part of the putative binding site for MHC class II, whereas four mainly recognize D1 determinants outside this loop. However, because all the mAbs block binding of hLAG3 to MHC class II, each of the epitopes they recognize must at least partially overlap the MHC class II binding site. The Journal of Immunology, 2022, 209: 1586-1594.
引用
收藏
页码:1586 / 1594
页数:10
相关论文
共 39 条
[1]   Exploring blocking assays using Octet, ProteOn, and Biacore biosensors [J].
Abdiche, Yasmina N. ;
Malashock, Dan S. ;
Pinkerton, Alanna ;
Pons, Jaume .
ANALYTICAL BIOCHEMISTRY, 2009, 386 (02) :172-180
[2]   High-Throughput Epitope Binning Assays on Label-Free Array-Based Biosensors Can Yield Exquisite Epitope Discrimination That Facilitates the Selection of Monoclonal Antibodies with Functional Activity [J].
Abdiche, Yasmina Noubia ;
Miles, Adam ;
Eckman, Josh ;
Foletti, Davide ;
Van Blarcom, Thomas J. ;
Yeung, Yik Andy ;
Pons, Jaume ;
Rajpal, Arvind .
PLOS ONE, 2014, 9 (03)
[3]   Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation [J].
Anderson, Ana C. ;
Joller, Nicole ;
Kuchroo, Vijay K. .
IMMUNITY, 2016, 44 (05) :989-1004
[4]   Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy [J].
Andrews, Lawrence P. ;
Cillo, Anthony R. ;
Karapetyan, Lilit ;
Kirkwood, John M. ;
Workman, Creg J. ;
Vignali, Dario A. A. .
CLINICAL CANCER RESEARCH, 2022, 28 (23) :5030-5039
[5]   Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups [J].
Andrews, Lawrence P. ;
Yano, Hiroshi ;
Vignali, Dario A. A. .
NATURE IMMUNOLOGY, 2019, 20 (11) :1425-1434
[6]   Initial efficacy of anti-lymphocyte activation gene-3 (anti-LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti-PD-1/PD-L1 therapy. [J].
Ascierto, Paolo Antonio ;
Melero, Ignacio ;
Bhatia, Shailender ;
Bono, Petri ;
Sanborn, Rachel E. ;
Lipson, Evan J. ;
Callahan, Margaret K. ;
Gajewski, Thomas ;
Gomez-Roca, Carlos A. ;
Hodi, F. Stephen ;
Curigliano, Giuseppe ;
Nyakas, Marta ;
Preusser, Matthias ;
Koguchi, Yoshinobu ;
Maurer, Matthew ;
Clynes, Raphael ;
Mitra, Priyam ;
Suryawanshi, Satyendra ;
Munoz-Couselo, Eva .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
[7]   SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies [J].
Barnes, Christopher O. ;
Jette, Claudia A. ;
Abernathy, Morgan E. ;
Dam, Kim-Marie A. ;
Esswein, Shannon R. ;
Gristick, Harry B. ;
Malyutin, Andrey G. ;
Sharaf, Naima G. ;
Huey-Tubman, Kathryn E. ;
Lee, Yu E. ;
Robbiani, Davide F. ;
Nussenzweig, Michel C. ;
West, Anthony P., Jr. ;
Bjorkman, Pamela J. .
NATURE, 2020, 588 (7839) :682-+
[8]  
Brignone C., 2015, United States patent application, Patent No. [PCT/US2015/020474, WO2015138920A1, 2015138920]
[9]  
Brignone C., 2017, United States patent application, Patent No. [PCT/EP2016/070664, WO2017037203A1, 2017037203]
[10]  
De Waal Malefyt R., 2016, United States patent application, Patent No. [PCT/US2015/045481, 2016028672A1, 2016028672]