Statistical Mechanics and Thermodynamics of Viral Evolution

被引:11
|
作者
Jones, Barbara A. [1 ]
Lessler, Justin [2 ]
Bianco, Simone [1 ]
Kaufman, James H. [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, San Jose, CA 95134 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
来源
PLOS ONE | 2015年 / 10卷 / 09期
关键词
MUTATIONAL ROBUSTNESS; VIRUS; FITNESS;
D O I
10.1371/journal.pone.0137482
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper uses methods drawn from physics to study the life cycle of viruses. The paper analyzes a model of viral infection and evolution using the "grand canonical ensemble" and formalisms from statistical mechanics and thermodynamics. Using this approach we enumerate all possible genetic states of a model virus and host as a function of two independent pressures-immune response and system temperature. We prove the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature "disordered" phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. This paper also reveals a universal relationship that relates the order parameter (as a measure of mutational robustness) to evolvability in agreement with recent experimental and theoretical work. Given that real viruses have finite length RNA segments that encode proteins which determine virus fitness, the approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Statistical Mechanics and the Evolution of Polygenic Quantitative Traits
    Barton, N. H.
    de Vladar, H. P.
    GENETICS, 2009, 181 (03) : 997 - 1011
  • [2] The interplay between mechanics and stability of viral cages
    Hernando-Perez, Mercedes
    Pascual, Elena
    Aznar, Maria
    Ionel, Alina
    Caston, Jose R.
    Luque, Antoni
    Carrascosa, Jose L.
    Reguera, David
    de Pablo, Pedro J.
    NANOSCALE, 2014, 6 (05) : 2702 - 2709
  • [3] Modelling Viral Evolution and Adaptation
    Manrubia, Susanna
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 125 - 129
  • [4] Viral diseases and human evolution
    Leal, ÉD
    Zanotto, PMD
    MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2000, 95 : 193 - 200
  • [5] Mechanics of Viral Chromatin Reveals the Pressurization of Human Adenovirus
    Ortega-Esteban, Alvaro
    Condezo, Gabriela N.
    Perez-Berna, Ana J.
    Chillon, Miguel
    Flint, S. Jane
    Reguera, David
    San Martin, Carmen
    de Pablo, Pedro J.
    ACS NANO, 2015, 9 (11) : 10826 - 10833
  • [6] Within-Host Viral Diversity: AWindow into Viral Evolution
    Lauring, Adam S.
    ANNUAL REVIEW OF VIROLOGY, VOL 7, 2020, 2020, 7 : 63 - 81
  • [7] Inhibition of Superinfection and the Evolution of Viral Latency
    Berngruber, Thomas W.
    Weissing, Franz J.
    Gandon, Sylvain
    JOURNAL OF VIROLOGY, 2010, 84 (19) : 10200 - 10208
  • [8] Editorial: Decoding the genetics of viral evolution
    Ali, Hashim
    Rahman, Sheikh Abdul
    Akhtar, Junaid
    Haque, Syed Asfarul
    Ali, Safdar
    FRONTIERS IN GENETICS, 2022, 13
  • [9] Rapid evolution of viral RNA genomes
    Domingo, E
    JOURNAL OF NUTRITION, 1997, 127 : S958 - S961
  • [10] Animal vaccination and the evolution of viral pathogens
    Schat, K. A.
    Baranowski, E.
    REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2007, 26 (02): : 327 - 338