The Santalo point of a function, and a functional form of the Santalo inequality

被引:125
作者
Artstein-Avidan, S [1 ]
Klartag, B
Milman, V
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08450 USA
[3] Inst Adv Study, Sch Math, Princeton, NJ 08450 USA
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0025579300015497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L(f) denote the Legendre transform of a function f : R-n -> R. A theorem of K. Ball about even functions is generalized, and it is proved that, for any measurable function f >= 0, there exists a translation J(x) = f (x - a) such that integral(Rn) e(-f) integral(Rn) e(-L(f)) <= (2 pi)(n). If a is selected so as to minimize the left side of (1), then equality in (1) is satisfied if and only if e(-f) is proportional to the distribution of a Gaussian random variable. This inequality immediately implies the Santalo inequality for convex bodies, as well as a new concentration inequality for the Gaussian measure.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 19 条
[1]  
ARNOLD VI, 1989, GRADUATE TEXS MATH, V60
[2]   LOGARITHMICALLY CONCAVE FUNCTIONS AND SECTIONS OF CONVEX-SETS IN RN [J].
BALL, K .
STUDIA MATHEMATICA, 1988, 88 (01) :69-84
[3]  
Ball K. M., 1987, THESIS U CAMBRIDGE
[4]   On a reverse form of the Brascamp-Lieb inequality [J].
Barthe, F .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :335-361
[5]  
Borell C., 1975, Period. Math. Hungar., V6, P111, DOI 10.1007/BF02018814
[6]  
BRUNN H, 1894, AKAD WISS, P93
[7]   Geometry of log-concave functions and measures [J].
Klartag, B ;
Milman, V .
GEOMETRIAE DEDICATA, 2005, 112 (01) :169-182
[8]   An isomorphic version of the slicing problem [J].
Klartag, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (02) :372-394
[9]  
Linnik J. V., 1977, Translations of Mathematical Monographs., V48
[10]  
Maurey B., 1991, Geometric & Functional Analysis GAFA, V1, P188